L(s) = 1 | + (−0.669 + 0.743i)2-s + (−0.104 + 0.994i)3-s + (−0.104 − 0.994i)4-s + (−0.669 − 0.743i)6-s + (−0.809 + 0.587i)7-s + (0.809 + 0.587i)8-s + (−0.978 − 0.207i)9-s + 12-s + (0.978 + 0.207i)13-s + (0.104 − 0.994i)14-s + (−0.978 + 0.207i)16-s + (−0.978 + 0.207i)17-s + (0.809 − 0.587i)18-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (−0.669 + 0.743i)24-s + ⋯ |
L(s) = 1 | + (−0.669 + 0.743i)2-s + (−0.104 + 0.994i)3-s + (−0.104 − 0.994i)4-s + (−0.669 − 0.743i)6-s + (−0.809 + 0.587i)7-s + (0.809 + 0.587i)8-s + (−0.978 − 0.207i)9-s + 12-s + (0.978 + 0.207i)13-s + (0.104 − 0.994i)14-s + (−0.978 + 0.207i)16-s + (−0.978 + 0.207i)17-s + (0.809 − 0.587i)18-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (−0.669 + 0.743i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.180i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.180i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3985990447 - 0.03618824444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3985990447 - 0.03618824444i\) |
\(L(1)\) |
\(\approx\) |
\(0.4906698317 + 0.2919935537i\) |
\(L(1)\) |
\(\approx\) |
\(0.4906698317 + 0.2919935537i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.669 + 0.743i)T \) |
| 3 | \( 1 + (-0.104 + 0.994i)T \) |
| 7 | \( 1 + (-0.809 + 0.587i)T \) |
| 13 | \( 1 + (0.978 + 0.207i)T \) |
| 17 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.104 - 0.994i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.913 + 0.406i)T \) |
| 53 | \( 1 + (-0.978 - 0.207i)T \) |
| 59 | \( 1 + (-0.913 - 0.406i)T \) |
| 61 | \( 1 + (-0.669 - 0.743i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.978 - 0.207i)T \) |
| 73 | \( 1 + (0.913 + 0.406i)T \) |
| 79 | \( 1 + (0.669 - 0.743i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.669 - 0.743i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.41799142248316801629738285341, −20.49732912937454485188851315340, −19.707170418616998497213822178630, −19.44930425473285953431534685372, −18.359135556560785093937264441619, −17.957057697507439184747245550605, −17.10700596438340365022029891297, −16.36537798827695373411017445529, −15.55398536763060397062467183503, −13.99706292522771043936608297819, −13.4249481294365841169137022285, −12.800948816095602079187696190932, −12.089183668569665294960269752117, −10.980910546964563845955813099863, −10.712839816549388908082203988455, −9.366647114760390088010253335371, −8.78879042673879662649584171733, −7.821276404581102001893827729880, −6.992141324983347070368888677106, −6.41858825151054514900542923991, −5.07228921552452584171754920256, −3.64768264747100379619877553293, −3.07764638837829552190737101860, −1.861377224004576575451878275, −1.0284271789183483193270888093,
0.247345825221865357496547287603, 1.980436864914258657708785583054, 3.18856116863509545506346115782, 4.295947338548753589543626006073, 5.1523006544208700822387081130, 6.27392553074017518713351737180, 6.45058419763073496860919611518, 8.0052131136014936318100775931, 8.78389016379229569526947086185, 9.326170585601352287848943436527, 10.11205989680057360286514313662, 10.93577224098828534109946717814, 11.633840011538535036740202381334, 13.011089697415712076435046796628, 13.81978161616853268671851035233, 14.87358652582372017537118756294, 15.454301581143038738906125462593, 15.98323750732031457512438520271, 16.73492604854877131008266102003, 17.391501758872894738013696479864, 18.4264961338266797595044832792, 18.99231360478306142404678857315, 19.957881462859036959711332856548, 20.61573022325113126839589870876, 21.58776908415043637003085223867