L(s) = 1 | + (0.642 − 0.766i)2-s + (0.342 + 0.939i)3-s + (−0.173 − 0.984i)4-s + (0.939 + 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (0.866 − 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (−0.766 − 0.642i)21-s + (0.984 − 0.173i)23-s + (0.173 − 0.984i)24-s + ⋯ |
L(s) = 1 | + (0.642 − 0.766i)2-s + (0.342 + 0.939i)3-s + (−0.173 − 0.984i)4-s + (0.939 + 0.342i)6-s + (−0.866 + 0.5i)7-s + (−0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (0.866 − 0.5i)12-s + (0.342 − 0.939i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (0.642 − 0.766i)17-s + i·18-s + (−0.766 − 0.642i)21-s + (0.984 − 0.173i)23-s + (0.173 − 0.984i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.492 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.492 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.691347541 - 0.9866716300i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.691347541 - 0.9866716300i\) |
\(L(1)\) |
\(\approx\) |
\(1.387372418 - 0.3793196450i\) |
\(L(1)\) |
\(\approx\) |
\(1.387372418 - 0.3793196450i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.642 - 0.766i)T \) |
| 3 | \( 1 + (0.342 + 0.939i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.342 - 0.939i)T \) |
| 17 | \( 1 + (0.642 - 0.766i)T \) |
| 23 | \( 1 + (0.984 - 0.173i)T \) |
| 29 | \( 1 + (0.766 - 0.642i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (0.939 - 0.342i)T \) |
| 43 | \( 1 + (0.984 + 0.173i)T \) |
| 47 | \( 1 + (0.642 + 0.766i)T \) |
| 53 | \( 1 + (0.984 - 0.173i)T \) |
| 59 | \( 1 + (-0.766 - 0.642i)T \) |
| 61 | \( 1 + (-0.173 - 0.984i)T \) |
| 67 | \( 1 + (0.642 + 0.766i)T \) |
| 71 | \( 1 + (0.173 - 0.984i)T \) |
| 73 | \( 1 + (-0.342 - 0.939i)T \) |
| 79 | \( 1 + (-0.939 + 0.342i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + (0.939 + 0.342i)T \) |
| 97 | \( 1 + (-0.642 + 0.766i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.6688096257902937693858153452, −21.098832765763547805385584257240, −20.01002289724944531866609492252, −19.33568790914555887914092525585, −18.54129532207216871802735642693, −17.659283841287121336480700014099, −16.85035619684475550643079246219, −16.27274826131425106870942947273, −15.30127552037539129141293165719, −14.294572641829494161996504507982, −13.956404589319585860917907550710, −12.940425980866264872020287292519, −12.60002556983836210591070249304, −11.68361107949399356738088443591, −10.581014198656381768136659367633, −9.16732946054220176657605869887, −8.70769657070848433324067583134, −7.5197357660745125607481241678, −7.03447965159904834994277708807, −6.27780470402828592964505730512, −5.51544085621727877948852824058, −4.147566608719727680395445170928, −3.42462432613631191429126303599, −2.51270094789803504526533590317, −1.12129991381499162938468280314,
0.73353970400008763382281476763, 2.45961669161654975866278230180, 3.004064965171087537415239786413, 3.76535704615003479631360654237, 4.795229769263966366180758876769, 5.57101229895198791349594418374, 6.30098792606573315450460471309, 7.743991777698282954353749934803, 8.94385917147510838870341109354, 9.50420675369281771144581826245, 10.252905371172795481647330597182, 10.96818550378384161380122818751, 11.866707653165038336291386574368, 12.73937035477200278674771256347, 13.47308896450474200614962153391, 14.28813091807459120791001523482, 15.16925186365747124416991449882, 15.65151716075859530037742693258, 16.42885812218166173919615501911, 17.55805782852232471224931789349, 18.72652014429859147144979245754, 19.18988498456688150628401961153, 20.147751691630816195388975271669, 20.66473044452120971230156808014, 21.36835861954082406866325708202