| L(s) = 1 | + (0.743 − 0.669i)2-s + (−0.994 + 0.104i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)6-s + (−0.587 + 0.809i)7-s + (−0.587 − 0.809i)8-s + (0.978 − 0.207i)9-s + i·12-s + (−0.207 − 0.978i)13-s + (0.104 + 0.994i)14-s + (−0.978 − 0.207i)16-s + (−0.207 + 0.978i)17-s + (0.587 − 0.809i)18-s + (0.5 − 0.866i)21-s + (−0.866 + 0.5i)23-s + (0.669 + 0.743i)24-s + ⋯ |
| L(s) = 1 | + (0.743 − 0.669i)2-s + (−0.994 + 0.104i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)6-s + (−0.587 + 0.809i)7-s + (−0.587 − 0.809i)8-s + (0.978 − 0.207i)9-s + i·12-s + (−0.207 − 0.978i)13-s + (0.104 + 0.994i)14-s + (−0.978 − 0.207i)16-s + (−0.207 + 0.978i)17-s + (0.587 − 0.809i)18-s + (0.5 − 0.866i)21-s + (−0.866 + 0.5i)23-s + (0.669 + 0.743i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.414 + 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.414 + 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5355043315 + 0.3444866836i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5355043315 + 0.3444866836i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8524141852 - 0.2160536541i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8524141852 - 0.2160536541i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.743 - 0.669i)T \) |
| 3 | \( 1 + (-0.994 + 0.104i)T \) |
| 7 | \( 1 + (-0.587 + 0.809i)T \) |
| 13 | \( 1 + (-0.207 - 0.978i)T \) |
| 17 | \( 1 + (-0.207 + 0.978i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.104 + 0.994i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.406 + 0.913i)T \) |
| 53 | \( 1 + (0.207 + 0.978i)T \) |
| 59 | \( 1 + (-0.913 + 0.406i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.978 - 0.207i)T \) |
| 73 | \( 1 + (0.406 + 0.913i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.743 + 0.669i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.720573861977699878133244241650, −20.86674424195163537916965558769, −19.995895309908485978763938487480, −18.9021045653437627981587313449, −18.03105879228346342098975991571, −17.249049733914533749614198353918, −16.51687162200873863165625440469, −16.15414901503578683436452727584, −15.28524070251304310334283968737, −14.0871935560020450949526271435, −13.59874522978914176146511716416, −12.75051765229340781463810715588, −11.90822371203681545799833319688, −11.375383718788420994726296007128, −10.25215564141531040126934222285, −9.43284343622511309790963798245, −8.14488058069987317071599296999, −7.14153427868930862053681775523, −6.68314770607815939201176371815, −5.9472420539458017798689109848, −4.803580545621437204169470269, −4.32931736692868851218163069121, −3.27408939830769686786344069374, −1.93390046604650754460214045688, −0.243571977106771240618282521118,
1.228203346352671030175447441, 2.354632240743795609290827325092, 3.406334987066808993781564284250, 4.304293122252154266434964784821, 5.33008310439398715479304717432, 5.91176659912916920081442452499, 6.52822713105120926270032993488, 7.805711372407946657270367803490, 9.18019069238458183256659011267, 9.95309897398520222420585203568, 10.64196555980172991417434720648, 11.44038618532879125558413040913, 12.27829059651450025923390884467, 12.741458894091929989591316778335, 13.43949832244797436952038710497, 14.758424581098458003740268738295, 15.3587826653404179123104143808, 16.0058993120816360357007135831, 16.98072979439815384760749057605, 18.049712244808597001410581515217, 18.49344763490107844552982092355, 19.52341169977959727371422601722, 20.09796666037401266186230579417, 21.27313273207454224670137065045, 21.7956756061730130385873772720