L(s) = 1 | + (0.997 + 0.0697i)2-s + (0.615 + 0.788i)3-s + (0.990 + 0.139i)4-s + (0.559 + 0.829i)6-s + (0.978 − 0.207i)7-s + (0.978 + 0.207i)8-s + (−0.241 + 0.970i)9-s + (0.5 + 0.866i)12-s + (−0.961 + 0.275i)13-s + (0.990 − 0.139i)14-s + (0.961 + 0.275i)16-s + (0.241 + 0.970i)17-s + (−0.309 + 0.951i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.438 + 0.898i)24-s + ⋯ |
L(s) = 1 | + (0.997 + 0.0697i)2-s + (0.615 + 0.788i)3-s + (0.990 + 0.139i)4-s + (0.559 + 0.829i)6-s + (0.978 − 0.207i)7-s + (0.978 + 0.207i)8-s + (−0.241 + 0.970i)9-s + (0.5 + 0.866i)12-s + (−0.961 + 0.275i)13-s + (0.990 − 0.139i)14-s + (0.961 + 0.275i)16-s + (0.241 + 0.970i)17-s + (−0.309 + 0.951i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.438 + 0.898i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.309956759 + 2.196848200i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.309956759 + 2.196848200i\) |
\(L(1)\) |
\(\approx\) |
\(2.354674007 + 0.8811677405i\) |
\(L(1)\) |
\(\approx\) |
\(2.354674007 + 0.8811677405i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.997 + 0.0697i)T \) |
| 3 | \( 1 + (0.615 + 0.788i)T \) |
| 7 | \( 1 + (0.978 - 0.207i)T \) |
| 13 | \( 1 + (-0.961 + 0.275i)T \) |
| 17 | \( 1 + (0.241 + 0.970i)T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.374 - 0.927i)T \) |
| 31 | \( 1 + (0.913 + 0.406i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (-0.615 - 0.788i)T \) |
| 43 | \( 1 + (-0.173 + 0.984i)T \) |
| 47 | \( 1 + (-0.848 - 0.529i)T \) |
| 53 | \( 1 + (0.719 + 0.694i)T \) |
| 59 | \( 1 + (0.848 - 0.529i)T \) |
| 61 | \( 1 + (0.438 - 0.898i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.719 + 0.694i)T \) |
| 73 | \( 1 + (-0.0348 - 0.999i)T \) |
| 79 | \( 1 + (0.559 - 0.829i)T \) |
| 83 | \( 1 + (0.104 - 0.994i)T \) |
| 89 | \( 1 + (-0.939 - 0.342i)T \) |
| 97 | \( 1 + (0.997 + 0.0697i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.230530050762585527344004060371, −20.75860478842350881908425219709, −19.89447592938886897540295868315, −19.3602257091000547022653851706, −18.30946058176703567582809355953, −17.62018599200173621487752260211, −16.653876256615876173304647268895, −15.5175953382165698508411453240, −14.847761807170703213239465483951, −14.26125507780235844915330021481, −13.58210310247902558978478873309, −12.78304592816625654645677584690, −11.8608298636530928410958536718, −11.57303741357069447417344270362, −10.30712657780359825063934427590, −9.28912704924091814337261417507, −8.14437075324892039833071334524, −7.460283271954378126017853801808, −6.84039009963797674048865487152, −5.600229290989252499877447085376, −4.99933667719896923494904261470, −3.85340845888266275428990408472, −2.84800293759793983909706438500, −2.12841673452183534183504106463, −1.17505894255386535689676692818,
1.6960277178289302401411090014, 2.478318177451544736478839597809, 3.50471370003800893657388744174, 4.46242672427718047083865213437, 4.84252418065526537088021329269, 5.891812094418188940348238125040, 7.033599573810547457987467376024, 7.98283213397950702316428005484, 8.53540068429135371504749466060, 9.97426029955073416529960434713, 10.47250826082140796203344483661, 11.44992499069835167460302884633, 12.13995375509172285832755055940, 13.23699188457412031569749000239, 13.972788683223664934362511387861, 14.77670281873558060143006843916, 14.976667789679886358051015647698, 16.0104630335442267937158457779, 16.87377445825945275816439411177, 17.39828467186085359482097975612, 18.918926901004559478603933839874, 19.62381197137995978368707037115, 20.45946094763951442488763637786, 20.9745404974375461060512340988, 21.6628152754633458628850924813