L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 + 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.104 + 0.994i)6-s + (−0.951 − 0.309i)7-s + (0.951 − 0.309i)8-s + (−0.913 − 0.406i)9-s + i·12-s + (0.406 − 0.913i)13-s + (−0.978 − 0.207i)14-s + (0.913 − 0.406i)16-s + (−0.406 − 0.913i)17-s + (−0.951 − 0.309i)18-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s + (0.104 + 0.994i)24-s + ⋯ |
L(s) = 1 | + (0.994 − 0.104i)2-s + (−0.207 + 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.104 + 0.994i)6-s + (−0.951 − 0.309i)7-s + (0.951 − 0.309i)8-s + (−0.913 − 0.406i)9-s + i·12-s + (0.406 − 0.913i)13-s + (−0.978 − 0.207i)14-s + (0.913 − 0.406i)16-s + (−0.406 − 0.913i)17-s + (−0.951 − 0.309i)18-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s + (0.104 + 0.994i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.883 - 0.468i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.883 - 0.468i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.223660026 - 0.5533515944i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.223660026 - 0.5533515944i\) |
\(L(1)\) |
\(\approx\) |
\(1.649891301 + 0.007440660075i\) |
\(L(1)\) |
\(\approx\) |
\(1.649891301 + 0.007440660075i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.994 - 0.104i)T \) |
| 3 | \( 1 + (-0.207 + 0.978i)T \) |
| 7 | \( 1 + (-0.951 - 0.309i)T \) |
| 13 | \( 1 + (0.406 - 0.913i)T \) |
| 17 | \( 1 + (-0.406 - 0.913i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.978 + 0.207i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.978 + 0.207i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.743 - 0.669i)T \) |
| 53 | \( 1 + (0.406 - 0.913i)T \) |
| 59 | \( 1 + (0.669 + 0.743i)T \) |
| 61 | \( 1 + (-0.104 + 0.994i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.913 + 0.406i)T \) |
| 73 | \( 1 + (-0.743 + 0.669i)T \) |
| 79 | \( 1 + (-0.104 - 0.994i)T \) |
| 83 | \( 1 + (0.587 - 0.809i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.994 - 0.104i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.77632609296759141226153082421, −21.01095833492724160823187370048, −19.9113256871287071982391190633, −19.33349372551242868761758322402, −18.7483368088021508011857276381, −17.58763588063174965924480365310, −16.7782697066809112387964914487, −16.12786171978795379343924903958, −15.19661828248279863451781455345, −14.374850821910283306145321171587, −13.45590014344192248933723531749, −12.99685748522355961091861087309, −12.33419494740465644605886825682, −11.44999890328374364471732885007, −10.864261863064088125796312844959, −9.52461598069525986397868568794, −8.492943155249261304849773411375, −7.51058854855913831843115805223, −6.61152122401550493526368329991, −6.22130634709665055812741408716, −5.33341421756104216519608141128, −4.160274802416074554754975809059, −3.18473859733127335969979521411, −2.29474960604980383512731685021, −1.33385669679437249617288082498,
0.72389504520926273666244319634, 2.580713048979190993951376773068, 3.222574886451138266577299648552, 4.045080174917692674327463574621, 4.906072099950630226973172698888, 5.74125242717580751523754735287, 6.490572788407257838398819824385, 7.433702193522661100848613047099, 8.71186694032531856377210549195, 9.76240203249767805204405088752, 10.34967905978000810748971777995, 11.19621753477593450935421397462, 11.8548105967701419902611501678, 13.0718588138020404612484109547, 13.35306053825414433963173503850, 14.5814301111365478204329614777, 15.14969202093488198213684001037, 15.963262997178891239176449261282, 16.43875454485041474995016365372, 17.249054926265636494510172104945, 18.44611071642009993906014800417, 19.53194652143254863596015703741, 20.26755870317843543291530779629, 20.70849601726188590415885047438, 21.586379774812862741458942123930