| L(s) = 1 | + (−0.743 + 0.669i)2-s + (0.994 − 0.104i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)6-s + (0.587 − 0.809i)7-s + (0.587 + 0.809i)8-s + (0.978 − 0.207i)9-s − i·12-s + (0.207 + 0.978i)13-s + (0.104 + 0.994i)14-s + (−0.978 − 0.207i)16-s + (0.207 − 0.978i)17-s + (−0.587 + 0.809i)18-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s + (0.669 + 0.743i)24-s + ⋯ |
| L(s) = 1 | + (−0.743 + 0.669i)2-s + (0.994 − 0.104i)3-s + (0.104 − 0.994i)4-s + (−0.669 + 0.743i)6-s + (0.587 − 0.809i)7-s + (0.587 + 0.809i)8-s + (0.978 − 0.207i)9-s − i·12-s + (0.207 + 0.978i)13-s + (0.104 + 0.994i)14-s + (−0.978 − 0.207i)16-s + (0.207 − 0.978i)17-s + (−0.587 + 0.809i)18-s + (0.5 − 0.866i)21-s + (0.866 − 0.5i)23-s + (0.669 + 0.743i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.732882021 + 0.03132025960i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.732882021 + 0.03132025960i\) |
| \(L(1)\) |
\(\approx\) |
\(1.190138988 + 0.1192500411i\) |
| \(L(1)\) |
\(\approx\) |
\(1.190138988 + 0.1192500411i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.743 + 0.669i)T \) |
| 3 | \( 1 + (0.994 - 0.104i)T \) |
| 7 | \( 1 + (0.587 - 0.809i)T \) |
| 13 | \( 1 + (0.207 + 0.978i)T \) |
| 17 | \( 1 + (0.207 - 0.978i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.104 + 0.994i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.587 + 0.809i)T \) |
| 41 | \( 1 + (0.104 + 0.994i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (0.406 - 0.913i)T \) |
| 53 | \( 1 + (-0.207 - 0.978i)T \) |
| 59 | \( 1 + (-0.913 + 0.406i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.978 - 0.207i)T \) |
| 73 | \( 1 + (-0.406 - 0.913i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (0.951 - 0.309i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.743 - 0.669i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.2338913858222976983561129831, −20.77812902353669952234755497037, −19.94254352468977595173265407372, −19.13068818011384097861363361092, −18.74713848769737796538981065115, −17.68846318121989667418857458523, −17.23922848768731032182202632131, −15.79583304078857465068530057866, −15.46221429104415137120628307836, −14.48010715851053443111017654537, −13.52796721877518063786125031274, −12.655502200749137135155638846628, −12.11865970971211793389787493944, −10.84979254169807517124287356535, −10.416592247208358757264594606936, −9.23100119468350066095277974690, −8.82701522721529502467494217270, −7.936884248175674543923699578103, −7.45358147395102423811225358168, −6.02993471529950106469373326289, −4.797182298981078416006778986306, −3.72183626677215487459279312821, −2.94125747273420891875942814503, −2.090391437627111697686899028738, −1.20608012924364506568158332473,
0.99559845898740640492944528172, 1.82293952771415366164581917061, 2.9851109907170670340017043532, 4.304945557662079632198833892164, 4.95289385250516246085767353762, 6.410796284683736763363921850540, 7.17003661905625701955332993940, 7.71359743675064123382453444907, 8.66240180404231065882320078885, 9.24933196951624795468952013206, 10.10264481844755051456877748966, 10.93523610763515007370145678998, 11.85554462832449207504094276201, 13.308978796793417603740765987835, 13.84644404502243086051796869495, 14.584351083913181339443220160828, 15.13227525888665816327881488113, 16.269962551226112063082283103013, 16.67719277329707206731259757601, 17.76436159521132077593709341021, 18.46870311829060417144708485236, 19.104817282054441676393432463581, 19.89776991217723350292122692788, 20.64964346198194045856270309104, 21.10897745304344624830769398277