L(s) = 1 | + (0.961 + 0.275i)2-s + (−0.882 − 0.469i)3-s + (0.848 + 0.529i)4-s + (−0.719 − 0.694i)6-s + (−0.669 + 0.743i)7-s + (0.669 + 0.743i)8-s + (0.559 + 0.829i)9-s + (−0.5 − 0.866i)12-s + (0.438 − 0.898i)13-s + (−0.848 + 0.529i)14-s + (0.438 + 0.898i)16-s + (−0.559 + 0.829i)17-s + (0.309 + 0.951i)18-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (−0.241 − 0.970i)24-s + ⋯ |
L(s) = 1 | + (0.961 + 0.275i)2-s + (−0.882 − 0.469i)3-s + (0.848 + 0.529i)4-s + (−0.719 − 0.694i)6-s + (−0.669 + 0.743i)7-s + (0.669 + 0.743i)8-s + (0.559 + 0.829i)9-s + (−0.5 − 0.866i)12-s + (0.438 − 0.898i)13-s + (−0.848 + 0.529i)14-s + (0.438 + 0.898i)16-s + (−0.559 + 0.829i)17-s + (0.309 + 0.951i)18-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (−0.241 − 0.970i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.978 - 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.978 - 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.07704560333 + 0.7361775451i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.07704560333 + 0.7361775451i\) |
\(L(1)\) |
\(\approx\) |
\(1.141970904 + 0.3107026755i\) |
\(L(1)\) |
\(\approx\) |
\(1.141970904 + 0.3107026755i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.961 + 0.275i)T \) |
| 3 | \( 1 + (-0.882 - 0.469i)T \) |
| 7 | \( 1 + (-0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.438 - 0.898i)T \) |
| 17 | \( 1 + (-0.559 + 0.829i)T \) |
| 23 | \( 1 + (-0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.0348 + 0.999i)T \) |
| 31 | \( 1 + (0.104 - 0.994i)T \) |
| 37 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.882 + 0.469i)T \) |
| 43 | \( 1 + (-0.766 - 0.642i)T \) |
| 47 | \( 1 + (0.615 - 0.788i)T \) |
| 53 | \( 1 + (-0.997 + 0.0697i)T \) |
| 59 | \( 1 + (0.615 + 0.788i)T \) |
| 61 | \( 1 + (-0.241 + 0.970i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (0.997 + 0.0697i)T \) |
| 73 | \( 1 + (-0.990 + 0.139i)T \) |
| 79 | \( 1 + (0.719 - 0.694i)T \) |
| 83 | \( 1 + (-0.913 - 0.406i)T \) |
| 89 | \( 1 + (-0.173 - 0.984i)T \) |
| 97 | \( 1 + (0.961 + 0.275i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.046050469522668821642312529460, −20.43050171623182263227506179583, −19.568510223956832673216194776, −18.709805153543645133981229915822, −17.70828859684559106897181010526, −16.731023068013424629628696001743, −16.02303650101117519122681539980, −15.739033835946228051228816070639, −14.43754831121864196585971578603, −13.83067754825071921958371415745, −12.92024398052690717882634035123, −12.20670937636020577995864994753, −11.34124194909366945814849204220, −10.79708742053751482833689467262, −9.92273895260290043885239733507, −9.231202023509055941136076058877, −7.55774016692207491961829774735, −6.567013372401761623315244132348, −6.25994802629672425563825368156, −5.0840228606589867339530722256, −4.26856722171827114608441229579, −3.73710539560857245908974323034, −2.52215092867631309147452414009, −1.19446523526054329989794466979, −0.12097241226151119821485527370,
1.46483712241234149484017268549, 2.49352616367310631799276619484, 3.524988767769384642145346602165, 4.55692086749231257072616949222, 5.65612895675440030725672940424, 5.963536651725658530034138884642, 6.80613057784270137421759081019, 7.75154729530678955893385858174, 8.60620273727733157067626708848, 10.035493969732675615750832871327, 10.84463330476379051741292168890, 11.7010766458058723059772290137, 12.34186166281218661008574950584, 13.12048142530296197672987874437, 13.48288547382229386815935181984, 14.845669950446097950248910425943, 15.51310636468239411305019424822, 16.15773592682427220651668871408, 16.95042383590903962393247457257, 17.77588412904283530624034881644, 18.534593378331631981123576436289, 19.53228486040712881252383044714, 20.22535746340677339564411107635, 21.37831069610390973579681313612, 22.07166353424538424721212383057