L(s) = 1 | + (−0.848 − 0.529i)2-s + (−0.559 − 0.829i)3-s + (0.438 + 0.898i)4-s + (0.0348 + 0.999i)6-s + (0.104 + 0.994i)7-s + (0.104 − 0.994i)8-s + (−0.374 + 0.927i)9-s + (0.5 − 0.866i)12-s + (0.615 + 0.788i)13-s + (0.438 − 0.898i)14-s + (−0.615 + 0.788i)16-s + (0.374 + 0.927i)17-s + (0.809 − 0.587i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (−0.882 + 0.469i)24-s + ⋯ |
L(s) = 1 | + (−0.848 − 0.529i)2-s + (−0.559 − 0.829i)3-s + (0.438 + 0.898i)4-s + (0.0348 + 0.999i)6-s + (0.104 + 0.994i)7-s + (0.104 − 0.994i)8-s + (−0.374 + 0.927i)9-s + (0.5 − 0.866i)12-s + (0.615 + 0.788i)13-s + (0.438 − 0.898i)14-s + (−0.615 + 0.788i)16-s + (0.374 + 0.927i)17-s + (0.809 − 0.587i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (−0.882 + 0.469i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0627 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0627 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2939058368 + 0.3129512976i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2939058368 + 0.3129512976i\) |
\(L(1)\) |
\(\approx\) |
\(0.5474260180 - 0.05317966186i\) |
\(L(1)\) |
\(\approx\) |
\(0.5474260180 - 0.05317966186i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.848 - 0.529i)T \) |
| 3 | \( 1 + (-0.559 - 0.829i)T \) |
| 7 | \( 1 + (0.104 + 0.994i)T \) |
| 13 | \( 1 + (0.615 + 0.788i)T \) |
| 17 | \( 1 + (0.374 + 0.927i)T \) |
| 23 | \( 1 + (-0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.997 - 0.0697i)T \) |
| 31 | \( 1 + (-0.978 - 0.207i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.559 + 0.829i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.241 + 0.970i)T \) |
| 53 | \( 1 + (-0.990 + 0.139i)T \) |
| 59 | \( 1 + (-0.241 + 0.970i)T \) |
| 61 | \( 1 + (-0.882 - 0.469i)T \) |
| 67 | \( 1 + (-0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.990 + 0.139i)T \) |
| 73 | \( 1 + (-0.961 + 0.275i)T \) |
| 79 | \( 1 + (0.0348 - 0.999i)T \) |
| 83 | \( 1 + (-0.669 - 0.743i)T \) |
| 89 | \( 1 + (-0.939 + 0.342i)T \) |
| 97 | \( 1 + (-0.848 - 0.529i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.082769656256441780546188378681, −20.34723829669489536394246713451, −20.080759277842057504143074007117, −18.711101108448150277055940995385, −18.05338380131287659223943954780, −17.36370062452371543049287943460, −16.452381966857640247553336789121, −16.28225953246274237829869865927, −15.216237361851389116493930819693, −14.56047374964029018484178252002, −13.696968800608647064327500531811, −12.492562710053735516929230320249, −11.22943098617858461835494408949, −10.90202926366041341644502925957, −10.04337456972162015087570116882, −9.43552535500723980051629052937, −8.44088002607368608147348568002, −7.55428499891144646370276514922, −6.69729657424196867922070317961, −5.7929120782359593457211532637, −5.02076903565920364888897507569, −4.034163394807256685536640356053, −2.91950236144795407992158869885, −1.29059743603572451284637605773, −0.27961943968009636837534762873,
1.44364826224334381692312757422, 1.9190736644988774002751573542, 3.04825701922994561997093388941, 4.21116823969963721007736734845, 5.67934389713177555532428060398, 6.21913726173915479476356174590, 7.345991442334447542711090125387, 7.99600566792438313249736540418, 8.90468687559916768550932583704, 9.58283587355244095648547466099, 10.890840213576284519030175050935, 11.29658238808562830272225330860, 12.138548168683097307918343593908, 12.7354767221319263563568520351, 13.52408326515931187841398937477, 14.7151479950860168113391069289, 15.77356433553774309479741452307, 16.545599633655492704554698173997, 17.23609452686305726545686704011, 18.08179308723070961167818027573, 18.59802703878287174943616537794, 19.18312402410095154129282650636, 19.90225158962673058339407917344, 20.999928806717730494394451517476, 21.7036900606716347220492761410