Properties

Label 1-1045-1045.49-r0-0-0
Degree $1$
Conductor $1045$
Sign $-0.367 + 0.929i$
Analytic cond. $4.85295$
Root an. cond. $4.85295$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.913 − 0.406i)2-s + (−0.669 + 0.743i)3-s + (0.669 + 0.743i)4-s + (0.913 − 0.406i)6-s + (−0.309 + 0.951i)7-s + (−0.309 − 0.951i)8-s + (−0.104 − 0.994i)9-s − 12-s + (0.104 + 0.994i)13-s + (0.669 − 0.743i)14-s + (−0.104 + 0.994i)16-s + (0.104 − 0.994i)17-s + (−0.309 + 0.951i)18-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.913 + 0.406i)24-s + ⋯
L(s)  = 1  + (−0.913 − 0.406i)2-s + (−0.669 + 0.743i)3-s + (0.669 + 0.743i)4-s + (0.913 − 0.406i)6-s + (−0.309 + 0.951i)7-s + (−0.309 − 0.951i)8-s + (−0.104 − 0.994i)9-s − 12-s + (0.104 + 0.994i)13-s + (0.669 − 0.743i)14-s + (−0.104 + 0.994i)16-s + (0.104 − 0.994i)17-s + (−0.309 + 0.951i)18-s + (−0.5 − 0.866i)21-s + (0.5 − 0.866i)23-s + (0.913 + 0.406i)24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.367 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.367 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-0.367 + 0.929i$
Analytic conductor: \(4.85295\)
Root analytic conductor: \(4.85295\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1045} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 1045,\ (0:\ ),\ -0.367 + 0.929i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3254316131 + 0.4786222764i\)
\(L(\frac12)\) \(\approx\) \(0.3254316131 + 0.4786222764i\)
\(L(1)\) \(\approx\) \(0.5327251155 + 0.1619627366i\)
\(L(1)\) \(\approx\) \(0.5327251155 + 0.1619627366i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 \)
19 \( 1 \)
good2 \( 1 + (-0.913 - 0.406i)T \)
3 \( 1 + (-0.669 + 0.743i)T \)
7 \( 1 + (-0.309 + 0.951i)T \)
13 \( 1 + (0.104 + 0.994i)T \)
17 \( 1 + (0.104 - 0.994i)T \)
23 \( 1 + (0.5 - 0.866i)T \)
29 \( 1 + (0.669 + 0.743i)T \)
31 \( 1 + (-0.809 + 0.587i)T \)
37 \( 1 + (-0.309 + 0.951i)T \)
41 \( 1 + (0.669 - 0.743i)T \)
43 \( 1 + (0.5 + 0.866i)T \)
47 \( 1 + (0.978 + 0.207i)T \)
53 \( 1 + (0.104 + 0.994i)T \)
59 \( 1 + (-0.978 + 0.207i)T \)
61 \( 1 + (0.913 - 0.406i)T \)
67 \( 1 + (0.5 - 0.866i)T \)
71 \( 1 + (-0.104 + 0.994i)T \)
73 \( 1 + (0.978 - 0.207i)T \)
79 \( 1 + (0.913 + 0.406i)T \)
83 \( 1 + (0.809 + 0.587i)T \)
89 \( 1 + (-0.5 + 0.866i)T \)
97 \( 1 + (-0.913 - 0.406i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.1498559043222966173766910241, −20.16426970118919753702460790821, −19.50536930299862772498951948215, −18.98447002408466519528044255283, −17.93367502047533401350943314055, −17.440473185891822393751473844006, −16.882182120774116394363595231590, −16.07321900662639357184139115986, −15.25082787118605323855034410797, −14.2282266139100252082371777095, −13.31730925326901109711456340409, −12.60428152670888658692868295857, −11.53178690306137284604794290772, −10.7066396031508703452714786847, −10.29214113494351269269778482618, −9.200539006312648934121342281910, −8.007020823100449489079182308580, −7.595729918084366170668911734601, −6.7286640961441604374714410136, −5.947399458241295926572679125216, −5.2191536813369509407031887730, −3.795715851683234527285099731015, −2.424829742177262428284824260305, −1.316715171158199425275962285745, −0.45439393155846958877973368519, 1.06135274452310523229652074087, 2.42496410169269953010714995370, 3.245925538158762600393008403369, 4.36527849997990242781696045198, 5.355299541234550903082678856787, 6.43621095317912116965317369150, 7.0287568841398752801103923572, 8.42316516222185761837660673985, 9.20829413360428488319378367884, 9.55743134728509365012865044558, 10.69831993547985242114562087518, 11.2161675498999287632310256017, 12.2232105024843880433985208496, 12.44111361076345214238306911089, 13.98217263241020971419713276778, 15.04661332217673286475707625305, 15.88240154712851921725779425818, 16.33614763194464735537599154546, 17.05357324789781469043474660294, 18.04715572794761692247371898868, 18.521861402315949758635795172576, 19.30553521537878615689684431938, 20.34826508677395020934649032067, 20.990113780155602927501486417757, 21.71692011411586553662891291349

Graph of the $Z$-function along the critical line