L(s) = 1 | + (0.898 + 0.438i)2-s + (0.927 − 0.374i)3-s + (0.615 + 0.788i)4-s + (0.997 + 0.0697i)6-s + (0.207 − 0.978i)7-s + (0.207 + 0.978i)8-s + (0.719 − 0.694i)9-s + (0.866 + 0.5i)12-s + (−0.970 + 0.241i)13-s + (0.615 − 0.788i)14-s + (−0.241 + 0.970i)16-s + (0.694 − 0.719i)17-s + (0.951 − 0.309i)18-s + (−0.173 − 0.984i)21-s + (−0.342 − 0.939i)23-s + (0.559 + 0.829i)24-s + ⋯ |
L(s) = 1 | + (0.898 + 0.438i)2-s + (0.927 − 0.374i)3-s + (0.615 + 0.788i)4-s + (0.997 + 0.0697i)6-s + (0.207 − 0.978i)7-s + (0.207 + 0.978i)8-s + (0.719 − 0.694i)9-s + (0.866 + 0.5i)12-s + (−0.970 + 0.241i)13-s + (0.615 − 0.788i)14-s + (−0.241 + 0.970i)16-s + (0.694 − 0.719i)17-s + (0.951 − 0.309i)18-s + (−0.173 − 0.984i)21-s + (−0.342 − 0.939i)23-s + (0.559 + 0.829i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.808888441 - 0.07010738877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.808888441 - 0.07010738877i\) |
\(L(1)\) |
\(\approx\) |
\(2.424215642 + 0.1230070070i\) |
\(L(1)\) |
\(\approx\) |
\(2.424215642 + 0.1230070070i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.898 + 0.438i)T \) |
| 3 | \( 1 + (0.927 - 0.374i)T \) |
| 7 | \( 1 + (0.207 - 0.978i)T \) |
| 13 | \( 1 + (-0.970 + 0.241i)T \) |
| 17 | \( 1 + (0.694 - 0.719i)T \) |
| 23 | \( 1 + (-0.342 - 0.939i)T \) |
| 29 | \( 1 + (0.990 - 0.139i)T \) |
| 31 | \( 1 + (0.913 - 0.406i)T \) |
| 37 | \( 1 + (0.951 - 0.309i)T \) |
| 41 | \( 1 + (0.374 + 0.927i)T \) |
| 43 | \( 1 + (-0.342 + 0.939i)T \) |
| 47 | \( 1 + (-0.469 + 0.882i)T \) |
| 53 | \( 1 + (-0.275 + 0.961i)T \) |
| 59 | \( 1 + (0.882 - 0.469i)T \) |
| 61 | \( 1 + (-0.559 + 0.829i)T \) |
| 67 | \( 1 + (-0.984 - 0.173i)T \) |
| 71 | \( 1 + (0.961 - 0.275i)T \) |
| 73 | \( 1 + (0.529 - 0.848i)T \) |
| 79 | \( 1 + (-0.997 + 0.0697i)T \) |
| 83 | \( 1 + (-0.994 + 0.104i)T \) |
| 89 | \( 1 + (-0.766 - 0.642i)T \) |
| 97 | \( 1 + (-0.898 - 0.438i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.5941846936099331467186196032, −20.97359753076713280540150584278, −20.03212279933426883643131965559, −19.4063503157112941619330709549, −18.87825736309573206512477592778, −17.79772773707589900557196054800, −16.571409394302863292457569500863, −15.5728213794121122192410253186, −15.19021496749055843962874128400, −14.42106960890958130494276972660, −13.81590730126943301951842901021, −12.78500981219298620658481692887, −12.21277465713034855415758883577, −11.35715197873198109924649881020, −10.149386271564518846841254487981, −9.81278520515086282413726739998, −8.66926127545346752523248549161, −7.8437185373961423002811567797, −6.804409537843910870152023356199, −5.62104167081188059805667616415, −4.9851961835751334209467280031, −4.01195296254769442929240887700, −3.07915029311127475990611274103, −2.39817525767783632124868258050, −1.499941513876707197307814769283,
1.16765731536585101323606842683, 2.49520443991870117464551795527, 3.07980230770998537526622922181, 4.3173360488559905027189452251, 4.67403524110435513781971235557, 6.169402593523451582159525240024, 6.919865658436042919671044354952, 7.72261284937527303617410632698, 8.152079768921867351771421177493, 9.46121965556151687569652286802, 10.26877297659264072042972463809, 11.4801750827483083513215252014, 12.28235876880408906423319060694, 13.02457610360443678487460706701, 13.85044970795105409418946312923, 14.35797066042210667008259434254, 14.89818358225145246091065083287, 15.984098506374642579803553355551, 16.65796415363611536081482754315, 17.52804238811816650332532325729, 18.40042511295549268116498234395, 19.60633691983302731870761966503, 19.98099676200870787997697432612, 20.93328716252894209830712971221, 21.31351136166522264222679459039