L(s) = 1 | + (0.139 + 0.990i)2-s + (0.970 − 0.241i)3-s + (−0.961 + 0.275i)4-s + (0.374 + 0.927i)6-s + (−0.406 + 0.913i)7-s + (−0.406 − 0.913i)8-s + (0.882 − 0.469i)9-s + (−0.866 + 0.5i)12-s + (0.529 − 0.848i)13-s + (−0.961 − 0.275i)14-s + (0.848 − 0.529i)16-s + (0.469 − 0.882i)17-s + (0.587 + 0.809i)18-s + (−0.173 + 0.984i)21-s + (0.342 − 0.939i)23-s + (−0.615 − 0.788i)24-s + ⋯ |
L(s) = 1 | + (0.139 + 0.990i)2-s + (0.970 − 0.241i)3-s + (−0.961 + 0.275i)4-s + (0.374 + 0.927i)6-s + (−0.406 + 0.913i)7-s + (−0.406 − 0.913i)8-s + (0.882 − 0.469i)9-s + (−0.866 + 0.5i)12-s + (0.529 − 0.848i)13-s + (−0.961 − 0.275i)14-s + (0.848 − 0.529i)16-s + (0.469 − 0.882i)17-s + (0.587 + 0.809i)18-s + (−0.173 + 0.984i)21-s + (0.342 − 0.939i)23-s + (−0.615 − 0.788i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.933017049 + 0.7310113759i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.933017049 + 0.7310113759i\) |
\(L(1)\) |
\(\approx\) |
\(1.347370323 + 0.5186219082i\) |
\(L(1)\) |
\(\approx\) |
\(1.347370323 + 0.5186219082i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.139 + 0.990i)T \) |
| 3 | \( 1 + (0.970 - 0.241i)T \) |
| 7 | \( 1 + (-0.406 + 0.913i)T \) |
| 13 | \( 1 + (0.529 - 0.848i)T \) |
| 17 | \( 1 + (0.469 - 0.882i)T \) |
| 23 | \( 1 + (0.342 - 0.939i)T \) |
| 29 | \( 1 + (-0.719 - 0.694i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.587 + 0.809i)T \) |
| 41 | \( 1 + (0.241 + 0.970i)T \) |
| 43 | \( 1 + (0.342 + 0.939i)T \) |
| 47 | \( 1 + (-0.898 - 0.438i)T \) |
| 53 | \( 1 + (0.999 + 0.0348i)T \) |
| 59 | \( 1 + (-0.438 - 0.898i)T \) |
| 61 | \( 1 + (0.615 - 0.788i)T \) |
| 67 | \( 1 + (0.984 - 0.173i)T \) |
| 71 | \( 1 + (0.0348 + 0.999i)T \) |
| 73 | \( 1 + (-0.0697 + 0.997i)T \) |
| 79 | \( 1 + (-0.374 + 0.927i)T \) |
| 83 | \( 1 + (0.207 + 0.978i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (-0.139 - 0.990i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.22439885718290722205580416908, −20.743844714995604191718250391679, −19.82223872635580407806160554660, −19.38059969283015889722056604819, −18.757091768226531059988838173745, −17.730787400336333064376388785369, −16.78519792504346605560314881966, −15.93327167618696218628134134530, −14.83708656447188577713769697586, −14.185884453719081158913826283957, −13.4824958689349690056631389877, −12.94432997880101198157150743274, −11.95864980761222014701790169404, −10.81622308659349645116834666775, −10.36634321445518102576819755699, −9.40612590117332276275937158770, −8.86995218516856056915208334890, −7.861010716600515227725258758, −6.95053043932742762087211126238, −5.65146511259446123487463567768, −4.44160717145773576375449869710, −3.777621962797920468148819748495, −3.2055062429767935841026931601, −1.97641615062376477440740926167, −1.17781008854958424116638902819,
0.88547625089807130383150455596, 2.54875472188025892980040796206, 3.20969254796266811310253967810, 4.269564948000631389178484503868, 5.322950230077495220074678442693, 6.220846005176426207074034625762, 6.96845682274615370449094674378, 8.16491898143011703372280483168, 8.28988666132518565686902893498, 9.555926810541793713164316721867, 9.7910834086465135545943977352, 11.455469378381597165556467027017, 12.60683573447531278027211793300, 13.033421679813943035154089822019, 13.85043113147596055053426191108, 14.74096986232663986852592654149, 15.26696552598742578627260143728, 15.9339052727633180092318683209, 16.74113116750041301147499539978, 17.90970455724521708900636902605, 18.548521061362729067051327983656, 18.95580412276831447510938795009, 20.09029815026792933402544211190, 20.91751013304442040495315338434, 21.65602093829479302368671386173