| L(s) = 1 | + (−0.994 + 0.104i)2-s + (−0.207 + 0.978i)3-s + (0.978 − 0.207i)4-s + (0.104 − 0.994i)6-s + (−0.951 − 0.309i)7-s + (−0.951 + 0.309i)8-s + (−0.913 − 0.406i)9-s + i·12-s + (−0.406 + 0.913i)13-s + (0.978 + 0.207i)14-s + (0.913 − 0.406i)16-s + (−0.406 − 0.913i)17-s + (0.951 + 0.309i)18-s + (0.5 − 0.866i)21-s + (−0.866 + 0.5i)23-s + (−0.104 − 0.994i)24-s + ⋯ |
| L(s) = 1 | + (−0.994 + 0.104i)2-s + (−0.207 + 0.978i)3-s + (0.978 − 0.207i)4-s + (0.104 − 0.994i)6-s + (−0.951 − 0.309i)7-s + (−0.951 + 0.309i)8-s + (−0.913 − 0.406i)9-s + i·12-s + (−0.406 + 0.913i)13-s + (0.978 + 0.207i)14-s + (0.913 − 0.406i)16-s + (−0.406 − 0.913i)17-s + (0.951 + 0.309i)18-s + (0.5 − 0.866i)21-s + (−0.866 + 0.5i)23-s + (−0.104 − 0.994i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4233613340 - 0.03413137450i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4233613340 - 0.03413137450i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4787115855 + 0.1306876469i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4787115855 + 0.1306876469i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.994 + 0.104i)T \) |
| 3 | \( 1 + (-0.207 + 0.978i)T \) |
| 7 | \( 1 + (-0.951 - 0.309i)T \) |
| 13 | \( 1 + (-0.406 + 0.913i)T \) |
| 17 | \( 1 + (-0.406 - 0.913i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.978 + 0.207i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.978 + 0.207i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.743 + 0.669i)T \) |
| 53 | \( 1 + (0.406 - 0.913i)T \) |
| 59 | \( 1 + (-0.669 - 0.743i)T \) |
| 61 | \( 1 + (0.104 - 0.994i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.913 - 0.406i)T \) |
| 73 | \( 1 + (-0.743 + 0.669i)T \) |
| 79 | \( 1 + (-0.104 - 0.994i)T \) |
| 83 | \( 1 + (0.587 - 0.809i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.994 - 0.104i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.62898512499821823368707496236, −20.18385047382855077767565141619, −19.94985834323309199927012782191, −19.11798305949335108233365268004, −18.43214906630004968793388561534, −17.86121726980931250259500822011, −16.9536270608351824859454334052, −16.44855289166509916300749174594, −15.385926585256182705035538907716, −14.6896540977373195947120124021, −13.294369311649545743163072869667, −12.704412071741389977681293147181, −12.10015767551280166067635754892, −11.11989369424986198998279008062, −10.35634140831587773551927963637, −9.45185869753204105894536328034, −8.586907662528399981452534089669, −7.78116508102342505647105400503, −7.09629542904881128004094855492, −6.0846167890699924455662559235, −5.71634510497525252646320873556, −3.819367514479818009521766418355, −2.67947115220338463208195778895, −2.06595482439861307678838265360, −0.746986972629847569445259126698,
0.35991374206730381726405832490, 2.01473868893823947356455143712, 3.08274295430637136540421945765, 3.96374360832067563934951441584, 5.141552800044402902548554548006, 6.136205452462908992845765612514, 6.88142408688575540818356606715, 7.79523102385200782036658072762, 9.0658723495370340028907301960, 9.428185824899076343292482929904, 10.07960557798076134626707339616, 11.02342047752705900900128596954, 11.61969098688074765613836404188, 12.56487540120023010111280471542, 13.862734133038921321660474710910, 14.67709263512391100785080071387, 15.61921169418630066675247468581, 16.22330530325275257469651189862, 16.6732076697480321761871223710, 17.48649951227193204515955745443, 18.37716561902345832696616028060, 19.20958122699386489196531452315, 20.11016120819470281313705996039, 20.37989473053814229992395087550, 21.594314959963964828593031885073