| L(s) = 1 | + (0.994 + 0.104i)2-s + (0.207 + 0.978i)3-s + (0.978 + 0.207i)4-s + (0.104 + 0.994i)6-s + (0.951 − 0.309i)7-s + (0.951 + 0.309i)8-s + (−0.913 + 0.406i)9-s + i·12-s + (0.406 + 0.913i)13-s + (0.978 − 0.207i)14-s + (0.913 + 0.406i)16-s + (0.406 − 0.913i)17-s + (−0.951 + 0.309i)18-s + (0.5 + 0.866i)21-s + (0.866 + 0.5i)23-s + (−0.104 + 0.994i)24-s + ⋯ |
| L(s) = 1 | + (0.994 + 0.104i)2-s + (0.207 + 0.978i)3-s + (0.978 + 0.207i)4-s + (0.104 + 0.994i)6-s + (0.951 − 0.309i)7-s + (0.951 + 0.309i)8-s + (−0.913 + 0.406i)9-s + i·12-s + (0.406 + 0.913i)13-s + (0.978 − 0.207i)14-s + (0.913 + 0.406i)16-s + (0.406 − 0.913i)17-s + (−0.951 + 0.309i)18-s + (0.5 + 0.866i)21-s + (0.866 + 0.5i)23-s + (−0.104 + 0.994i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.298 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.298 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.897627075 + 2.130597490i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.897627075 + 2.130597490i\) |
| \(L(1)\) |
\(\approx\) |
\(2.115510677 + 0.9030734892i\) |
| \(L(1)\) |
\(\approx\) |
\(2.115510677 + 0.9030734892i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.994 + 0.104i)T \) |
| 3 | \( 1 + (0.207 + 0.978i)T \) |
| 7 | \( 1 + (0.951 - 0.309i)T \) |
| 13 | \( 1 + (0.406 + 0.913i)T \) |
| 17 | \( 1 + (0.406 - 0.913i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.978 - 0.207i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.978 - 0.207i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.743 + 0.669i)T \) |
| 53 | \( 1 + (-0.406 - 0.913i)T \) |
| 59 | \( 1 + (-0.669 + 0.743i)T \) |
| 61 | \( 1 + (0.104 + 0.994i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.913 + 0.406i)T \) |
| 73 | \( 1 + (0.743 + 0.669i)T \) |
| 79 | \( 1 + (-0.104 + 0.994i)T \) |
| 83 | \( 1 + (-0.587 - 0.809i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.994 - 0.104i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.27784840653366277905865289876, −20.69803035250166289720843559811, −19.9682361212283982426155252067, −19.15406285619186583534278750733, −18.36887932553790338912224007613, −17.52977214963780052372941300518, −16.74870424935061147409225681239, −15.57133219974416790713691131318, −14.75048382812721013065521735934, −14.37667192995779651862299395537, −13.38392554157090853801809299363, −12.65556171426920939931232790346, −12.21424487946440373142508667535, −11.03534286219493866539646467253, −10.76775126822941344526487464662, −9.1415955185429368033947518947, −8.10615772176676636754262639894, −7.58022256309537619178493735865, −6.55956964415421361733498832255, −5.69893375442793076836767951978, −5.086472331872207501512938755850, −3.78556852533371004068806033429, −2.9331054438007498633138686983, −1.92221359026734926458663406388, −1.18593520155319340999629278526,
1.53090334009249473215755144747, 2.59092633524418769442529487135, 3.64278755978612979404346221956, 4.298999518995467788386686742091, 5.112745835731640952396822188290, 5.75687770840579310340996679111, 7.0596538613644543361761433879, 7.77719744891867891318568947059, 8.85233162189810954057842284181, 9.71250124417349359627492679222, 10.95754122365896503392285812063, 11.197532426342003216503520088677, 12.048046305019331113355685037405, 13.29597250421910019936151317030, 14.0194163048737424817842258161, 14.54707191738163903313458572416, 15.27711008585846902009359113868, 16.10124113806768710883168849880, 16.742330587542044280645449894472, 17.46424285763261696797061105233, 18.74295413669796599455640647601, 19.69419241839023341820664915954, 20.63933063251044780276218338092, 20.9660219602206079435986496118, 21.51790014601477163671286699384