| L(s) = 1 | + (−0.829 − 0.559i)2-s + (−0.139 − 0.990i)3-s + (0.374 + 0.927i)4-s + (−0.438 + 0.898i)6-s + (0.207 + 0.978i)7-s + (0.207 − 0.978i)8-s + (−0.961 + 0.275i)9-s + (0.866 − 0.5i)12-s + (0.694 − 0.719i)13-s + (0.374 − 0.927i)14-s + (−0.719 + 0.694i)16-s + (0.275 − 0.961i)17-s + (0.951 + 0.309i)18-s + (0.939 − 0.342i)21-s + (−0.642 − 0.766i)23-s + (−0.997 − 0.0697i)24-s + ⋯ |
| L(s) = 1 | + (−0.829 − 0.559i)2-s + (−0.139 − 0.990i)3-s + (0.374 + 0.927i)4-s + (−0.438 + 0.898i)6-s + (0.207 + 0.978i)7-s + (0.207 − 0.978i)8-s + (−0.961 + 0.275i)9-s + (0.866 − 0.5i)12-s + (0.694 − 0.719i)13-s + (0.374 − 0.927i)14-s + (−0.719 + 0.694i)16-s + (0.275 − 0.961i)17-s + (0.951 + 0.309i)18-s + (0.939 − 0.342i)21-s + (−0.642 − 0.766i)23-s + (−0.997 − 0.0697i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.106 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.106 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5989838663 - 0.6666092875i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5989838663 - 0.6666092875i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6410372998 - 0.3432330939i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6410372998 - 0.3432330939i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.829 - 0.559i)T \) |
| 3 | \( 1 + (-0.139 - 0.990i)T \) |
| 7 | \( 1 + (0.207 + 0.978i)T \) |
| 13 | \( 1 + (0.694 - 0.719i)T \) |
| 17 | \( 1 + (0.275 - 0.961i)T \) |
| 23 | \( 1 + (-0.642 - 0.766i)T \) |
| 29 | \( 1 + (-0.615 + 0.788i)T \) |
| 31 | \( 1 + (0.913 + 0.406i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (-0.990 + 0.139i)T \) |
| 43 | \( 1 + (-0.642 + 0.766i)T \) |
| 47 | \( 1 + (0.999 + 0.0348i)T \) |
| 53 | \( 1 + (0.970 + 0.241i)T \) |
| 59 | \( 1 + (-0.0348 - 0.999i)T \) |
| 61 | \( 1 + (0.997 - 0.0697i)T \) |
| 67 | \( 1 + (0.342 - 0.939i)T \) |
| 71 | \( 1 + (-0.241 - 0.970i)T \) |
| 73 | \( 1 + (0.469 - 0.882i)T \) |
| 79 | \( 1 + (0.438 + 0.898i)T \) |
| 83 | \( 1 + (-0.994 - 0.104i)T \) |
| 89 | \( 1 + (-0.173 - 0.984i)T \) |
| 97 | \( 1 + (0.829 + 0.559i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.59835614695819659272320306927, −20.8328031564957988764834940956, −20.18470047457764309444235374416, −19.43942079147330015881250606774, −18.5675957687195770756784580876, −17.52096414427823966495132218072, −17.00605124599989358970879431834, −16.430367119747097952080510189781, −15.60241646619180866281907761480, −14.93719817760463897624312472052, −14.09050450829889392737139224647, −13.42005056155213843996386544351, −11.705046779658814333154061312113, −11.22144176407457337844897151922, −10.21511059275194081816718770258, −9.923248493667254556651361923729, −8.81814174295016332602368684835, −8.17313500740908505861987683303, −7.204611282332183313419889013204, −6.19941871263128526462027447819, −5.51355226138052551613068081685, −4.31596548263694237452822860270, −3.72384435136149732988252747265, −2.142519558340335984473745514013, −0.929468174910056686111788370227,
0.66717535736034555429360682830, 1.71434724497792838555174482925, 2.60642825680011984537272693143, 3.32596972249598509550275858202, 4.924837109025997017688977293012, 5.9853988511196745393388358885, 6.77286260647659808945241122101, 7.81747217234277182746251452519, 8.36757628131626451055651179969, 9.10022527113380004540435531458, 10.14831655380143450089536334890, 11.13342772899619576992342505858, 11.77191781543059109689414023727, 12.42922962151742753492262177689, 13.129570094391143421079377464631, 14.044198308976972737933286845357, 15.17215685071121010704438881020, 16.08455893501559171286677343540, 16.85846839848001334598514800960, 17.8163368317967565149430822052, 18.495971796743664922091916700, 18.55528608378567286072738082607, 19.75547214342572778902137668655, 20.326043491714770610343306946794, 21.12524677623476869154843444300