L(s) = 1 | + (0.241 − 0.970i)2-s + (0.0348 − 0.999i)3-s + (−0.882 − 0.469i)4-s + (−0.961 − 0.275i)6-s + (0.669 + 0.743i)7-s + (−0.669 + 0.743i)8-s + (−0.997 − 0.0697i)9-s + (−0.5 + 0.866i)12-s + (−0.559 + 0.829i)13-s + (0.882 − 0.469i)14-s + (0.559 + 0.829i)16-s + (−0.997 + 0.0697i)17-s + (−0.309 + 0.951i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (0.719 + 0.694i)24-s + ⋯ |
L(s) = 1 | + (0.241 − 0.970i)2-s + (0.0348 − 0.999i)3-s + (−0.882 − 0.469i)4-s + (−0.961 − 0.275i)6-s + (0.669 + 0.743i)7-s + (−0.669 + 0.743i)8-s + (−0.997 − 0.0697i)9-s + (−0.5 + 0.866i)12-s + (−0.559 + 0.829i)13-s + (0.882 − 0.469i)14-s + (0.559 + 0.829i)16-s + (−0.997 + 0.0697i)17-s + (−0.309 + 0.951i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (0.719 + 0.694i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.744 - 0.667i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.744 - 0.667i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.142533251 - 0.4367651958i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.142533251 - 0.4367651958i\) |
\(L(1)\) |
\(\approx\) |
\(0.8661967196 - 0.5560909508i\) |
\(L(1)\) |
\(\approx\) |
\(0.8661967196 - 0.5560909508i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.241 - 0.970i)T \) |
| 3 | \( 1 + (0.0348 - 0.999i)T \) |
| 7 | \( 1 + (0.669 + 0.743i)T \) |
| 13 | \( 1 + (-0.559 + 0.829i)T \) |
| 17 | \( 1 + (-0.997 + 0.0697i)T \) |
| 23 | \( 1 + (-0.173 + 0.984i)T \) |
| 29 | \( 1 + (0.848 - 0.529i)T \) |
| 31 | \( 1 + (0.104 + 0.994i)T \) |
| 37 | \( 1 + (0.309 - 0.951i)T \) |
| 41 | \( 1 + (0.0348 - 0.999i)T \) |
| 43 | \( 1 + (0.173 + 0.984i)T \) |
| 47 | \( 1 + (0.374 - 0.927i)T \) |
| 53 | \( 1 + (0.438 + 0.898i)T \) |
| 59 | \( 1 + (0.374 + 0.927i)T \) |
| 61 | \( 1 + (0.719 - 0.694i)T \) |
| 67 | \( 1 + (0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.438 + 0.898i)T \) |
| 73 | \( 1 + (-0.615 + 0.788i)T \) |
| 79 | \( 1 + (0.961 - 0.275i)T \) |
| 83 | \( 1 + (0.913 - 0.406i)T \) |
| 89 | \( 1 + (0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.241 + 0.970i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.02682920288653751427526940021, −20.82032956677895679816014596694, −20.381478973922716748770574910560, −19.39653051079704575765083685669, −18.0596971058649035571018876557, −17.541720128328678830256304163914, −16.80322800240076736254689421931, −16.16941985736837114592859795085, −15.218423441471391857997041546570, −14.80509624393074206427247612775, −13.979779725062693319220254389831, −13.259165717010647956347846113416, −12.180681593294180938707315895172, −11.12506907855566357210661000511, −10.30336643022021599246076328219, −9.55847407843812394744025760845, −8.49161456933294775176435353630, −8.00813582633574769822059057730, −6.93600209589482985316710166498, −6.01763501813268299178492698217, −4.90824210864778205923116466419, −4.572780985333892827147156020979, −3.62122167966476181439331424567, −2.54197971874105178762449632865, −0.53051318639021352598570360544,
1.12077773656275147617689857056, 2.1285877790946308035299241624, 2.54637131628894420799314707680, 3.89874695771730060823938676216, 4.93572702392164302765915991981, 5.7218183364531173407678004311, 6.71383017362682977083369755056, 7.78817801686366600249058543657, 8.75035042715207710375810278815, 9.219748749647253656781695110976, 10.48411354001537101293305984717, 11.47321080141206848964629800127, 11.84457130601360630305176911625, 12.59602692851929686608916661628, 13.45918080792456509124799765274, 14.155869118035231686499888898306, 14.7869384879416695130229471859, 15.83373943310910681760517928226, 17.33312169506435418487148275232, 17.71402486386048786113045531134, 18.46673009194126382109339188269, 19.27278822484724071215260933021, 19.7041908427424760162774499546, 20.61621455075474666305048494462, 21.59251934746074836789918785809