L(s) = 1 | + (−0.898 + 0.438i)2-s + (0.927 + 0.374i)3-s + (0.615 − 0.788i)4-s + (−0.997 + 0.0697i)6-s + (0.207 + 0.978i)7-s + (−0.207 + 0.978i)8-s + (0.719 + 0.694i)9-s + (0.866 − 0.5i)12-s + (0.970 + 0.241i)13-s + (−0.615 − 0.788i)14-s + (−0.241 − 0.970i)16-s + (0.694 + 0.719i)17-s + (−0.951 − 0.309i)18-s + (−0.173 + 0.984i)21-s + (0.342 − 0.939i)23-s + (−0.559 + 0.829i)24-s + ⋯ |
L(s) = 1 | + (−0.898 + 0.438i)2-s + (0.927 + 0.374i)3-s + (0.615 − 0.788i)4-s + (−0.997 + 0.0697i)6-s + (0.207 + 0.978i)7-s + (−0.207 + 0.978i)8-s + (0.719 + 0.694i)9-s + (0.866 − 0.5i)12-s + (0.970 + 0.241i)13-s + (−0.615 − 0.788i)14-s + (−0.241 − 0.970i)16-s + (0.694 + 0.719i)17-s + (−0.951 − 0.309i)18-s + (−0.173 + 0.984i)21-s + (0.342 − 0.939i)23-s + (−0.559 + 0.829i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0414 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0414 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.159189742 + 1.112075443i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.159189742 + 1.112075443i\) |
\(L(1)\) |
\(\approx\) |
\(1.005680819 + 0.4887000789i\) |
\(L(1)\) |
\(\approx\) |
\(1.005680819 + 0.4887000789i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.898 + 0.438i)T \) |
| 3 | \( 1 + (0.927 + 0.374i)T \) |
| 7 | \( 1 + (0.207 + 0.978i)T \) |
| 13 | \( 1 + (0.970 + 0.241i)T \) |
| 17 | \( 1 + (0.694 + 0.719i)T \) |
| 23 | \( 1 + (0.342 - 0.939i)T \) |
| 29 | \( 1 + (0.990 + 0.139i)T \) |
| 31 | \( 1 + (-0.913 - 0.406i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.374 - 0.927i)T \) |
| 43 | \( 1 + (-0.342 - 0.939i)T \) |
| 47 | \( 1 + (0.469 + 0.882i)T \) |
| 53 | \( 1 + (-0.275 - 0.961i)T \) |
| 59 | \( 1 + (-0.882 - 0.469i)T \) |
| 61 | \( 1 + (0.559 + 0.829i)T \) |
| 67 | \( 1 + (-0.984 + 0.173i)T \) |
| 71 | \( 1 + (-0.961 - 0.275i)T \) |
| 73 | \( 1 + (0.529 + 0.848i)T \) |
| 79 | \( 1 + (-0.997 - 0.0697i)T \) |
| 83 | \( 1 + (-0.994 - 0.104i)T \) |
| 89 | \( 1 + (0.766 - 0.642i)T \) |
| 97 | \( 1 + (-0.898 + 0.438i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.09367424637016585040604917349, −20.29942590710135950022320310527, −19.891188465463145002245463755357, −19.10160771957191545483369644716, −18.21430590039311086790410320090, −17.82548396064272631416356065655, −16.708164968960751427488758551283, −16.04315009433974571364295879099, −15.13114585914608496848091145653, −14.10259781253821859974227255675, −13.407525148627361288595350445962, −12.69447557676087210414479219456, −11.6590032157690651215338651436, −10.86318645451182494979726593408, −9.98353731541481895621139519352, −9.29871624865027391978932511058, −8.41143561172706502828116597231, −7.669488556559159181235147163636, −7.1493929256720540990481816194, −6.11090815130965283214447070505, −4.44792587638280795430957024611, −3.47579127546732958820401784190, −2.88477152217170710847217675757, −1.547122309345304519703037688038, −0.95050808094115870429865445979,
1.31616413641556707588071052226, 2.22143588875258509037691838215, 3.12454996545655719595763895694, 4.36172130365486734792706437311, 5.49014560431995350838699298478, 6.28673724197593383795762408496, 7.36999467457357318301670094969, 8.323464245287231794292518432147, 8.688443897662379152676524868809, 9.451258300817296896381593321909, 10.35913962830655041473813152954, 11.05554992617936898248399174935, 12.13471628917356545417121642183, 13.142032130692449597394057679, 14.32080504029900569008933582679, 14.7092955811416253219215027898, 15.59185324837519685673525317809, 16.10362342394442342774781184847, 16.95366465419506904807087935116, 18.04147303067156090066615933303, 18.74575069538513123695442047308, 19.12858658343103912810175961423, 20.131211973327699668397147849277, 20.836301545763060511342928409179, 21.423661694936771640702358134166