L(s) = 1 | + (0.997 − 0.0697i)2-s + (0.615 − 0.788i)3-s + (0.990 − 0.139i)4-s + (0.559 − 0.829i)6-s + (0.978 + 0.207i)7-s + (0.978 − 0.207i)8-s + (−0.241 − 0.970i)9-s + (0.5 − 0.866i)12-s + (−0.961 − 0.275i)13-s + (0.990 + 0.139i)14-s + (0.961 − 0.275i)16-s + (0.241 − 0.970i)17-s + (−0.309 − 0.951i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (0.438 − 0.898i)24-s + ⋯ |
L(s) = 1 | + (0.997 − 0.0697i)2-s + (0.615 − 0.788i)3-s + (0.990 − 0.139i)4-s + (0.559 − 0.829i)6-s + (0.978 + 0.207i)7-s + (0.978 − 0.207i)8-s + (−0.241 − 0.970i)9-s + (0.5 − 0.866i)12-s + (−0.961 − 0.275i)13-s + (0.990 + 0.139i)14-s + (0.961 − 0.275i)16-s + (0.241 − 0.970i)17-s + (−0.309 − 0.951i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (0.438 − 0.898i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.309956759 - 2.196848200i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.309956759 - 2.196848200i\) |
\(L(1)\) |
\(\approx\) |
\(2.354674007 - 0.8811677405i\) |
\(L(1)\) |
\(\approx\) |
\(2.354674007 - 0.8811677405i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.997 - 0.0697i)T \) |
| 3 | \( 1 + (0.615 - 0.788i)T \) |
| 7 | \( 1 + (0.978 + 0.207i)T \) |
| 13 | \( 1 + (-0.961 - 0.275i)T \) |
| 17 | \( 1 + (0.241 - 0.970i)T \) |
| 23 | \( 1 + (-0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.374 + 0.927i)T \) |
| 31 | \( 1 + (0.913 - 0.406i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-0.615 + 0.788i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (-0.848 + 0.529i)T \) |
| 53 | \( 1 + (0.719 - 0.694i)T \) |
| 59 | \( 1 + (0.848 + 0.529i)T \) |
| 61 | \( 1 + (0.438 + 0.898i)T \) |
| 67 | \( 1 + (-0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.719 - 0.694i)T \) |
| 73 | \( 1 + (-0.0348 + 0.999i)T \) |
| 79 | \( 1 + (0.559 + 0.829i)T \) |
| 83 | \( 1 + (0.104 + 0.994i)T \) |
| 89 | \( 1 + (-0.939 + 0.342i)T \) |
| 97 | \( 1 + (0.997 - 0.0697i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.6628152754633458628850924813, −20.9745404974375461060512340988, −20.45946094763951442488763637786, −19.62381197137995978368707037115, −18.918926901004559478603933839874, −17.39828467186085359482097975612, −16.87377445825945275816439411177, −16.0104630335442267937158457779, −14.976667789679886358051015647698, −14.77670281873558060143006843916, −13.972788683223664934362511387861, −13.23699188457412031569749000239, −12.13995375509172285832755055940, −11.44992499069835167460302884633, −10.47250826082140796203344483661, −9.97426029955073416529960434713, −8.53540068429135371504749466060, −7.98283213397950702316428005484, −7.033599573810547457987467376024, −5.891812094418188940348238125040, −4.84252418065526537088021329269, −4.46242672427718047083865213437, −3.50471370003800893657388744174, −2.478318177451544736478839597809, −1.6960277178289302401411090014,
1.17505894255386535689676692818, 2.12841673452183534183504106463, 2.84800293759793983909706438500, 3.85340845888266275428990408472, 4.99933667719896923494904261470, 5.600229290989252499877447085376, 6.84039009963797674048865487152, 7.460283271954378126017853801808, 8.14437075324892039833071334524, 9.28912704924091814337261417507, 10.30712657780359825063934427590, 11.57303741357069447417344270362, 11.8608298636530928410958536718, 12.78304592816625654645677584690, 13.58210310247902558978478873309, 14.26125507780235844915330021481, 14.847761807170703213239465483951, 15.5175953382165698508411453240, 16.653876256615876173304647268895, 17.62018599200173621487752260211, 18.30946058176703567582809355953, 19.3602257091000547022653851706, 19.89447592938886897540295868315, 20.75860478842350881908425219709, 21.230530050762585527344004060371