L(s) = 1 | + (0.719 + 0.694i)2-s + (0.848 + 0.529i)3-s + (0.0348 + 0.999i)4-s + (0.241 + 0.970i)6-s + (0.669 + 0.743i)7-s + (−0.669 + 0.743i)8-s + (0.438 + 0.898i)9-s + (−0.5 + 0.866i)12-s + (0.997 + 0.0697i)13-s + (−0.0348 + 0.999i)14-s + (−0.997 + 0.0697i)16-s + (0.438 − 0.898i)17-s + (−0.309 + 0.951i)18-s + (0.173 + 0.984i)21-s + (0.939 − 0.342i)23-s + (−0.961 + 0.275i)24-s + ⋯ |
L(s) = 1 | + (0.719 + 0.694i)2-s + (0.848 + 0.529i)3-s + (0.0348 + 0.999i)4-s + (0.241 + 0.970i)6-s + (0.669 + 0.743i)7-s + (−0.669 + 0.743i)8-s + (0.438 + 0.898i)9-s + (−0.5 + 0.866i)12-s + (0.997 + 0.0697i)13-s + (−0.0348 + 0.999i)14-s + (−0.997 + 0.0697i)16-s + (0.438 − 0.898i)17-s + (−0.309 + 0.951i)18-s + (0.173 + 0.984i)21-s + (0.939 − 0.342i)23-s + (−0.961 + 0.275i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.659 + 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.659 + 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.405179527 + 3.104690209i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.405179527 + 3.104690209i\) |
\(L(1)\) |
\(\approx\) |
\(1.607910237 + 1.487959705i\) |
\(L(1)\) |
\(\approx\) |
\(1.607910237 + 1.487959705i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.719 + 0.694i)T \) |
| 3 | \( 1 + (0.848 + 0.529i)T \) |
| 7 | \( 1 + (0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.997 + 0.0697i)T \) |
| 17 | \( 1 + (0.438 - 0.898i)T \) |
| 23 | \( 1 + (0.939 - 0.342i)T \) |
| 29 | \( 1 + (-0.882 - 0.469i)T \) |
| 31 | \( 1 + (0.104 + 0.994i)T \) |
| 37 | \( 1 + (0.309 - 0.951i)T \) |
| 41 | \( 1 + (0.848 + 0.529i)T \) |
| 43 | \( 1 + (-0.939 - 0.342i)T \) |
| 47 | \( 1 + (-0.990 + 0.139i)T \) |
| 53 | \( 1 + (0.559 - 0.829i)T \) |
| 59 | \( 1 + (-0.990 - 0.139i)T \) |
| 61 | \( 1 + (-0.961 - 0.275i)T \) |
| 67 | \( 1 + (0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.559 - 0.829i)T \) |
| 73 | \( 1 + (-0.374 - 0.927i)T \) |
| 79 | \( 1 + (-0.241 + 0.970i)T \) |
| 83 | \( 1 + (0.913 - 0.406i)T \) |
| 89 | \( 1 + (-0.766 - 0.642i)T \) |
| 97 | \( 1 + (-0.719 - 0.694i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.05736273216835889056521952304, −20.52096351786465860870502538445, −19.927730973096241786114714281417, −19.03142188191256563181724327072, −18.49365442384283897197278575147, −17.592788599169565947722431266372, −16.52817484768219877769989629865, −15.22022360579959973083605113696, −14.855454798016204982107798390076, −13.97855341343550650090195734608, −13.3079636329835662983412345439, −12.84635635586730605914140704614, −11.73292819119027677476657301323, −11.01336497195919539721642541135, −10.19147825803900490801346169014, −9.23024602178834779917917723652, −8.33149341096326997332464555186, −7.44902031704891114807536931191, −6.49819671788726074074191240644, −5.57940249056581693568412737461, −4.3524232939976987861695954783, −3.69967567593784460706380846784, −2.86491287473116002548794178773, −1.62463499828740296103096130284, −1.14575324662731554175342208465,
1.75617737225003429333929454329, 2.834738708510342999127888328285, 3.5244830933610905068021621128, 4.61356606617425353541841447268, 5.19804205157768755370082206925, 6.18168290463535836033607118668, 7.3281466003072807523664806287, 8.06095708275697604012755814184, 8.819568715234210686347188058091, 9.40718456562510263737571965812, 10.83386410217751528969982935922, 11.52578364932634993796721070688, 12.56631681916805105013867699933, 13.39336288155057285793785410126, 14.12087805343392243100240103572, 14.78277361350798399174625744078, 15.397384534678449469018676152592, 16.13678660415042906946105297867, 16.771378263379999184407801989713, 18.025135753366288205992940565594, 18.523191386680765956820194489583, 19.66088583375455007679316966964, 20.74213689470840378847966305860, 21.05928637533719299741730672601, 21.673756936921249316793676191711