L(s) = 1 | − 3-s + 5-s − 7-s + 9-s + 11-s − 15-s + 17-s + 19-s + 21-s + 23-s + 25-s − 27-s − 29-s − 31-s − 33-s − 35-s + 37-s − 41-s − 43-s + 45-s − 47-s + 49-s − 51-s − 53-s + 55-s − 57-s + 59-s + ⋯ |
L(s) = 1 | − 3-s + 5-s − 7-s + 9-s + 11-s − 15-s + 17-s + 19-s + 21-s + 23-s + 25-s − 27-s − 29-s − 31-s − 33-s − 35-s + 37-s − 41-s − 43-s + 45-s − 47-s + 49-s − 51-s − 53-s + 55-s − 57-s + 59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8750666998\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8750666998\) |
\(L(1)\) |
\(\approx\) |
\(0.9070129404\) |
\(L(1)\) |
\(\approx\) |
\(0.9070129404\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.5096353772718546788974888875, −28.88885598313403019925322001465, −27.924856171979981876576125229046, −26.76288212088677660500730805150, −25.48102919548405567519246130769, −24.716032362294075183647369381635, −23.36399902596304044839772546573, −22.35753526992902581834247197095, −21.81015070031660427214621862639, −20.49265498993951683861831252313, −19.03167445007081970446097952905, −18.09525212087343326583733874672, −16.86992553228994345386835971299, −16.4414791464035576218382167085, −14.82791241339491441147557818157, −13.43836036271794521901736933929, −12.52648009351914427989300321012, −11.33239468034698603368518572027, −9.97440811482177937703459310240, −9.32988042748789355552564433362, −7.12706752621834119887642391507, −6.169822844033692662531572588, −5.20201547865457785022578707691, −3.41481777469765525985532567540, −1.370583964578187003116024339483,
1.370583964578187003116024339483, 3.41481777469765525985532567540, 5.20201547865457785022578707691, 6.169822844033692662531572588, 7.12706752621834119887642391507, 9.32988042748789355552564433362, 9.97440811482177937703459310240, 11.33239468034698603368518572027, 12.52648009351914427989300321012, 13.43836036271794521901736933929, 14.82791241339491441147557818157, 16.4414791464035576218382167085, 16.86992553228994345386835971299, 18.09525212087343326583733874672, 19.03167445007081970446097952905, 20.49265498993951683861831252313, 21.81015070031660427214621862639, 22.35753526992902581834247197095, 23.36399902596304044839772546573, 24.716032362294075183647369381635, 25.48102919548405567519246130769, 26.76288212088677660500730805150, 27.924856171979981876576125229046, 28.88885598313403019925322001465, 29.5096353772718546788974888875