L(s) = 1 | + (0.5 − 0.866i)2-s − i·3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.866 − 0.5i)6-s + (−0.866 − 0.5i)7-s − 8-s − 9-s + (0.866 − 0.5i)10-s + i·11-s + (−0.866 + 0.5i)12-s + (−0.5 + 0.866i)13-s + (−0.866 + 0.5i)14-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s − i·3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.866 − 0.5i)6-s + (−0.866 − 0.5i)7-s − 8-s − 9-s + (0.866 − 0.5i)10-s + i·11-s + (−0.866 + 0.5i)12-s + (−0.5 + 0.866i)13-s + (−0.866 + 0.5i)14-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9601149200 + 0.07729435659i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9601149200 + 0.07729435659i\) |
\(L(1)\) |
\(\approx\) |
\(0.9166093016 - 0.5277154636i\) |
\(L(1)\) |
\(\approx\) |
\(0.9166093016 - 0.5277154636i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 61 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + iT \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 + (-0.866 + 0.5i)T \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.866 + 0.5i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.866 - 0.5i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.91322596879151597763668641182, −20.93385629207089286901143403636, −20.35986848999056602316915267145, −19.20676955007643948311769130891, −18.11512985636869589433827192189, −17.324370863988274921968606908679, −16.56852579214757747042098557580, −16.14904247721988993826942494988, −15.31372369782101871273444340736, −14.61542047209962465613012773986, −13.68739736175108039398468201879, −13.069577009039863190741451132319, −12.265686787920620539747720336413, −11.158711122320201539684847857259, −10.05516885751021378842784723256, −9.27502891767227762014765633480, −8.81376099672682661787340791907, −7.828441026956884567570843821527, −6.452232008696774289856974674614, −5.788942691595932289037020905926, −5.25651191224081208107561913403, −4.336909313168575401078260507993, −3.16453507257319188830334539622, −2.65077469115826478137493468039, −0.31964232284963858489853270527,
1.48064291056942079233980296248, 1.98248308463314676202544529852, 3.009452831261223495702082481561, 3.848544406415901274557267386, 5.22029939664889423048866526087, 5.953593978165690051165435658245, 6.88431008716107791825873733854, 7.40641473440555904611788712535, 9.096564008381326940866869644227, 9.63362136797733967304867095157, 10.404905955615191131662552465551, 11.37400359280442651467354423474, 12.20894803327433868991695989608, 12.944008816802967520499603914822, 13.441541699188860372959171878415, 14.38787635807592593899411314263, 14.6575581342833055574086363317, 16.17133105419045859212969119603, 17.24851118763597397344747532595, 17.85904499152091096232301607468, 18.68446413659118272549490812414, 19.21723542896519379207895128952, 20.068273701829686336779840534023, 20.6160229055877021887490244952, 21.77757391655700650999609145810