L(s) = 1 | + (0.5 + 0.866i)2-s − i·3-s + (−0.5 + 0.866i)4-s + (−0.866 + 0.5i)5-s + (0.866 − 0.5i)6-s + (0.866 − 0.5i)7-s − 8-s − 9-s + (−0.866 − 0.5i)10-s + i·11-s + (0.866 + 0.5i)12-s + (−0.5 − 0.866i)13-s + (0.866 + 0.5i)14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s − i·3-s + (−0.5 + 0.866i)4-s + (−0.866 + 0.5i)5-s + (0.866 − 0.5i)6-s + (0.866 − 0.5i)7-s − 8-s − 9-s + (−0.866 − 0.5i)10-s + i·11-s + (0.866 + 0.5i)12-s + (−0.5 − 0.866i)13-s + (0.866 + 0.5i)14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.394 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.394 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.220058371 + 0.8038446223i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.220058371 + 0.8038446223i\) |
\(L(1)\) |
\(\approx\) |
\(1.085657179 + 0.3523988159i\) |
\(L(1)\) |
\(\approx\) |
\(1.085657179 + 0.3523988159i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 61 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + iT \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 + (0.866 + 0.5i)T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.866 + 0.5i)T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.24045057246613204033016585047, −20.806733244099770206810757241820, −20.16069906360924763408416166906, −19.10331559631226631998504864429, −18.77795975559044046095634357306, −17.45360458688479814330410432201, −16.576919064771897745031304838126, −15.78413977777988639800153907712, −15.04572523795672391999364966918, −14.294600229331925972277738892031, −13.7038750587553613280886368296, −12.22534229228137184414540719489, −11.85892109017053125822279017358, −11.20021149201700948545399549805, −10.39812775502697587758441439366, −9.43626207639007350120212484001, −8.60126065225305445745903697330, −8.10618730425429905060316666729, −6.34394575060866882323751397704, −5.32552123153530188561044709800, −4.70524091747061807768919610118, −4.01570598274091459642581198222, −3.15029476638421406830407053038, −2.099137224690852934299106459, −0.677954428998105080902093650841,
0.96412980691453280228428258655, 2.51989283097751251145316774755, 3.3451987991522100995846368599, 4.57900397738794367887690321451, 5.16572945339586920538829621282, 6.4458832295502323955394530388, 7.17128159367199871134642312380, 7.73832020975788732228072934900, 8.16317661774115757851623032071, 9.41796330603667735782993996413, 10.78866935038911446474655228334, 11.653061853221944161560683659877, 12.29978766227955207411398989698, 13.05611638750537848500929880098, 13.990890747539391707498070962977, 14.5972712775888740007249408057, 15.2580574551017359472743008668, 16.05823152978936083619624896081, 17.278241772121813748037725012525, 17.80779763938117172186359151339, 18.1306045919555446653332291709, 19.53451163123099685801746047891, 19.9226598708758214648205228364, 20.951564843561153037005167940567, 22.03308856258335939928883045326