L(s) = 1 | + (0.5 − 0.866i)2-s + i·3-s + (−0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.866 + 0.5i)6-s + (0.866 + 0.5i)7-s − 8-s − 9-s + (−0.866 + 0.5i)10-s − i·11-s + (0.866 − 0.5i)12-s + (−0.5 + 0.866i)13-s + (0.866 − 0.5i)14-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + i·3-s + (−0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.866 + 0.5i)6-s + (0.866 + 0.5i)7-s − 8-s − 9-s + (−0.866 + 0.5i)10-s − i·11-s + (0.866 − 0.5i)12-s + (−0.5 + 0.866i)13-s + (0.866 − 0.5i)14-s + (0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.220058371 - 0.8038446223i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.220058371 - 0.8038446223i\) |
\(L(1)\) |
\(\approx\) |
\(1.085657179 - 0.3523988159i\) |
\(L(1)\) |
\(\approx\) |
\(1.085657179 - 0.3523988159i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 61 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 - iT \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 + (0.866 - 0.5i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.866 - 0.5i)T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.866 + 0.5i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.03308856258335939928883045326, −20.951564843561153037005167940567, −19.9226598708758214648205228364, −19.53451163123099685801746047891, −18.1306045919555446653332291709, −17.80779763938117172186359151339, −17.278241772121813748037725012525, −16.05823152978936083619624896081, −15.2580574551017359472743008668, −14.5972712775888740007249408057, −13.990890747539391707498070962977, −13.05611638750537848500929880098, −12.29978766227955207411398989698, −11.653061853221944161560683659877, −10.78866935038911446474655228334, −9.41796330603667735782993996413, −8.16317661774115757851623032071, −7.73832020975788732228072934900, −7.17128159367199871134642312380, −6.4458832295502323955394530388, −5.16572945339586920538829621282, −4.57900397738794367887690321451, −3.3451987991522100995846368599, −2.51989283097751251145316774755, −0.96412980691453280228428258655,
0.677954428998105080902093650841, 2.099137224690852934299106459, 3.15029476638421406830407053038, 4.01570598274091459642581198222, 4.70524091747061807768919610118, 5.32552123153530188561044709800, 6.34394575060866882323751397704, 8.10618730425429905060316666729, 8.60126065225305445745903697330, 9.43626207639007350120212484001, 10.39812775502697587758441439366, 11.20021149201700948545399549805, 11.85892109017053125822279017358, 12.22534229228137184414540719489, 13.7038750587553613280886368296, 14.294600229331925972277738892031, 15.04572523795672391999364966918, 15.78413977777988639800153907712, 16.576919064771897745031304838126, 17.45360458688479814330410432201, 18.77795975559044046095634357306, 19.10331559631226631998504864429, 20.16069906360924763408416166906, 20.806733244099770206810757241820, 21.24045057246613204033016585047