L(s) = 1 | + (−0.5 + 0.866i)2-s − 3-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 − 0.866i)6-s + (0.5 − 0.866i)7-s + 8-s + 9-s + (0.5 + 0.866i)10-s − 11-s + (0.5 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s − 3-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 − 0.866i)6-s + (0.5 − 0.866i)7-s + 8-s + 9-s + (0.5 + 0.866i)10-s − 11-s + (0.5 + 0.866i)12-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.876 + 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1037 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.876 + 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.04442669874 + 0.1731779916i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.04442669874 + 0.1731779916i\) |
\(L(1)\) |
\(\approx\) |
\(0.5084872731 + 0.08200962354i\) |
\(L(1)\) |
\(\approx\) |
\(0.5084872731 + 0.08200962354i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
| 61 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.5 + 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.17500687817776882807706552283, −20.81285429743825290211587590960, −19.44249191217117902980012791052, −18.511186057861488647853350684133, −18.35114213850357224937970146101, −17.52225860420175229263950380323, −16.99026978536699607319014696599, −15.75173648255300966251840525402, −15.12741212125452043403341249977, −13.90816937668913767413283821242, −13.04990095094124113500777057435, −12.18421563871229559608424539835, −11.694776798173201921457835182751, −10.61916854021238022883962516956, −10.31628611825163799010336105662, −9.56509485767751778807798284220, −8.171436426294458256473261150641, −7.6622108376857395687150499241, −6.38573958157241764538999367657, −5.54426130764136077001248695690, −4.766443581054447539174721012075, −3.490505182979901624727173701697, −2.39256418623303481114380660016, −1.80020095287434719431094350463, −0.112052407869239873093908896950,
1.09910454368745912158801196650, 1.977337166925887624117625305238, 4.19366872101961484674823020375, 4.91558598354860353567595933077, 5.32230882249936370484588370460, 6.52860195119963201212198550128, 7.07715382028987306156826621793, 8.09911978697381618365229990168, 8.8856470253770864723612737051, 10.10106530573559536195419518888, 10.31219271636090390787101248320, 11.41725724812474722539449381226, 12.42382830549167303734177221029, 13.40717725909848428103871076967, 13.88450872703285669190750763872, 15.03296661176523632884045840979, 16.05313158526891394685902145149, 16.44922560003721577941057607563, 17.21637417632002100733400247338, 17.7444210796982202321462517552, 18.33548565205432865238674700793, 19.46314821851617234643089855369, 20.235066976182649381531230200472, 21.34118969173223778859606623010, 21.79422454787202208449258690258