L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.608 + 0.793i)3-s + (−0.965 − 0.258i)4-s + (0.321 − 0.946i)5-s + (−0.866 + 0.5i)6-s + (0.659 − 0.751i)7-s + (0.382 − 0.923i)8-s + (−0.258 + 0.965i)9-s + (0.896 + 0.442i)10-s + (0.991 − 0.130i)11-s + (−0.382 − 0.923i)12-s + (0.946 + 0.321i)13-s + (0.659 + 0.751i)14-s + (0.946 − 0.321i)15-s + (0.866 + 0.5i)16-s + (−0.751 + 0.659i)17-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.608 + 0.793i)3-s + (−0.965 − 0.258i)4-s + (0.321 − 0.946i)5-s + (−0.866 + 0.5i)6-s + (0.659 − 0.751i)7-s + (0.382 − 0.923i)8-s + (−0.258 + 0.965i)9-s + (0.896 + 0.442i)10-s + (0.991 − 0.130i)11-s + (−0.382 − 0.923i)12-s + (0.946 + 0.321i)13-s + (0.659 + 0.751i)14-s + (0.946 − 0.321i)15-s + (0.866 + 0.5i)16-s + (−0.751 + 0.659i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.404 + 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.404 + 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.782851231 + 1.160885470i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.782851231 + 1.160885470i\) |
\(L(1)\) |
\(\approx\) |
\(1.222134935 + 0.6317093364i\) |
\(L(1)\) |
\(\approx\) |
\(1.222134935 + 0.6317093364i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 97 | \( 1 \) |
good | 2 | \( 1 + (-0.130 + 0.991i)T \) |
| 3 | \( 1 + (0.608 + 0.793i)T \) |
| 5 | \( 1 + (0.321 - 0.946i)T \) |
| 7 | \( 1 + (0.659 - 0.751i)T \) |
| 11 | \( 1 + (0.991 - 0.130i)T \) |
| 13 | \( 1 + (0.946 + 0.321i)T \) |
| 17 | \( 1 + (-0.751 + 0.659i)T \) |
| 19 | \( 1 + (0.980 - 0.195i)T \) |
| 23 | \( 1 + (0.0654 - 0.997i)T \) |
| 29 | \( 1 + (-0.896 + 0.442i)T \) |
| 31 | \( 1 + (0.793 - 0.608i)T \) |
| 37 | \( 1 + (0.997 - 0.0654i)T \) |
| 41 | \( 1 + (0.442 + 0.896i)T \) |
| 43 | \( 1 + (0.258 + 0.965i)T \) |
| 47 | \( 1 + (-0.707 + 0.707i)T \) |
| 53 | \( 1 + (0.991 + 0.130i)T \) |
| 59 | \( 1 + (-0.0654 - 0.997i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.195 - 0.980i)T \) |
| 71 | \( 1 + (0.442 - 0.896i)T \) |
| 73 | \( 1 + (-0.965 + 0.258i)T \) |
| 79 | \( 1 + (0.923 + 0.382i)T \) |
| 83 | \( 1 + (-0.659 - 0.751i)T \) |
| 89 | \( 1 + (-0.382 + 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.82780341441154197011757071779, −28.88068978889254995179815804926, −27.63295227617248852432607990079, −26.63002171434581420841311658074, −25.542675822402090242780303659775, −24.616782758268943259872267433142, −23.0952443144256339725009380635, −22.188775263622861629341434652852, −21.06494591914134672015015486364, −20.05636775078728681236240486656, −18.9728954664883110100722828788, −18.15790092578951937411523327047, −17.588081850142862078370636501631, −15.22351458814624320264276108997, −14.12508590967449341985672318039, −13.42383894461116570170210720349, −11.90313187158717171308485277773, −11.26066989726686212345910025627, −9.59692414659246097104471405464, −8.6641695568007038536417958263, −7.33499068001009755258254054491, −5.76899604241724416001299514184, −3.68824275797015580316197097045, −2.509486383843658485024978740574, −1.374607153179556242951776901012,
1.2520159374244747970118717633, 3.996721200494449740234074645922, 4.70410640799947593036216048047, 6.19695158594891376923627638332, 7.90116419139265405703440704511, 8.80151385608624812322090756421, 9.64700227238350419183450529175, 11.10875251516698363209058682876, 13.19054691089393943290618585692, 13.992883378983600183757232131784, 14.947771951353126669893491854, 16.282242538349268358106627937925, 16.808057238007911709518257718129, 17.9642518880162638751807381940, 19.61491024010848449934431816857, 20.53119932399725101122404504302, 21.62196415727980480832185518358, 22.77452426231541616784681157838, 24.206451391856323064320532639117, 24.72945415428123514630758784831, 25.97366439090387325752693361886, 26.73269629624377589808506790508, 27.75014509522513133588106335392, 28.45890924214028536735448167022, 30.420193982202584269438164053254