| L(s) = 1 | + (0.973 − 0.230i)5-s + (−0.597 − 0.802i)7-s + (0.686 − 0.727i)11-s + (−0.893 − 0.448i)13-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (0.597 − 0.802i)23-s + (0.893 − 0.448i)25-s + (−0.835 − 0.549i)29-s + (−0.396 − 0.918i)31-s + (−0.766 − 0.642i)35-s + (−0.766 + 0.642i)37-s + (0.0581 + 0.998i)41-s + (−0.286 − 0.957i)43-s + (0.396 − 0.918i)47-s + ⋯ |
| L(s) = 1 | + (0.973 − 0.230i)5-s + (−0.597 − 0.802i)7-s + (0.686 − 0.727i)11-s + (−0.893 − 0.448i)13-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (0.597 − 0.802i)23-s + (0.893 − 0.448i)25-s + (−0.835 − 0.549i)29-s + (−0.396 − 0.918i)31-s + (−0.766 − 0.642i)35-s + (−0.766 + 0.642i)37-s + (0.0581 + 0.998i)41-s + (−0.286 − 0.957i)43-s + (0.396 − 0.918i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0774 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0774 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.035933753 - 0.9585391223i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.035933753 - 0.9585391223i\) |
| \(L(1)\) |
\(\approx\) |
\(1.091446643 - 0.3318003151i\) |
| \(L(1)\) |
\(\approx\) |
\(1.091446643 - 0.3318003151i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.973 - 0.230i)T \) |
| 7 | \( 1 + (-0.597 - 0.802i)T \) |
| 11 | \( 1 + (0.686 - 0.727i)T \) |
| 13 | \( 1 + (-0.893 - 0.448i)T \) |
| 17 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
| 23 | \( 1 + (0.597 - 0.802i)T \) |
| 29 | \( 1 + (-0.835 - 0.549i)T \) |
| 31 | \( 1 + (-0.396 - 0.918i)T \) |
| 37 | \( 1 + (-0.766 + 0.642i)T \) |
| 41 | \( 1 + (0.0581 + 0.998i)T \) |
| 43 | \( 1 + (-0.286 - 0.957i)T \) |
| 47 | \( 1 + (0.396 - 0.918i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.686 + 0.727i)T \) |
| 61 | \( 1 + (0.993 - 0.116i)T \) |
| 67 | \( 1 + (-0.835 + 0.549i)T \) |
| 71 | \( 1 + (0.173 + 0.984i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (0.0581 - 0.998i)T \) |
| 83 | \( 1 + (0.0581 - 0.998i)T \) |
| 89 | \( 1 + (-0.173 + 0.984i)T \) |
| 97 | \( 1 + (0.973 + 0.230i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.8495835408772734644139715941, −22.18070708203843983995109246084, −21.526759322385209953856612212709, −20.810567881736324869101949836277, −19.57815994687443101773361640056, −19.050390992724711211100667209, −18.08198284467740444185976406792, −17.2751172238063798649340163848, −16.64764286897222589454038897465, −15.500953424368537308680547227242, −14.63500358554701201667490396508, −14.08368166400178257350314795384, −12.78363838796775803910638385098, −12.41010844127787318559385583276, −11.271310877580304433562003194763, −10.155373866987836921703665369111, −9.39076329975171228343686521437, −8.94565174172556504211358399292, −7.32735657183223292524563196253, −6.680576197251371026037075794485, −5.66472994175256061501255134063, −4.89972728258293394231067132528, −3.48081278135449246410643163947, −2.44330696650237941259868380511, −1.5941246977435892717906177652,
0.689139477137518677085423388229, 1.94959786327593270887244059059, 3.149827925159435046636241636010, 4.13802185675961459910000776867, 5.34750771862690839408475958403, 6.19005152567025106031685066484, 6.99601422497312673939979606369, 8.155934236647265508219326073754, 9.14387644486945866341314487525, 10.04270827662264178308320976070, 10.52828038338774611249908585774, 11.800256077960570403859167058440, 12.853410992398992867574510981247, 13.34531641853496602831651176719, 14.37869142045981117220810182340, 14.93809662647928464967132672035, 16.50259275213783523346519992131, 16.846147038578454099531882159102, 17.43060916996303509955225980570, 18.760746605268924276508679690363, 19.28967006634846442508905783791, 20.35680286138019690608018436233, 20.96460478879828615150306918259, 21.98506872450967342389139886441, 22.48708331619730400494947421241