L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + 5-s + (−0.222 + 0.974i)6-s + (0.623 + 0.781i)8-s + (0.623 + 0.781i)9-s + (−0.222 − 0.974i)10-s + (0.623 − 0.781i)11-s + 12-s + (−0.900 + 0.433i)13-s + (−0.900 − 0.433i)15-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s + (0.623 − 0.781i)18-s + 19-s + ⋯ |
L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + 5-s + (−0.222 + 0.974i)6-s + (0.623 + 0.781i)8-s + (0.623 + 0.781i)9-s + (−0.222 − 0.974i)10-s + (0.623 − 0.781i)11-s + 12-s + (−0.900 + 0.433i)13-s + (−0.900 − 0.433i)15-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s + (0.623 − 0.781i)18-s + 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.453 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.453 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.231606844 - 0.7552060262i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.231606844 - 0.7552060262i\) |
\(L(1)\) |
\(\approx\) |
\(0.7698452669 - 0.4378280232i\) |
\(L(1)\) |
\(\approx\) |
\(0.7698452669 - 0.4378280232i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
good | 2 | \( 1 + (-0.222 - 0.974i)T \) |
| 3 | \( 1 + (-0.900 - 0.433i)T \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + (0.623 - 0.781i)T \) |
| 13 | \( 1 + (-0.900 + 0.433i)T \) |
| 17 | \( 1 + (-0.900 - 0.433i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.623 + 0.781i)T \) |
| 31 | \( 1 + (0.623 - 0.781i)T \) |
| 37 | \( 1 + (-0.900 + 0.433i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (0.623 - 0.781i)T \) |
| 47 | \( 1 + (0.623 + 0.781i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.623 + 0.781i)T \) |
| 61 | \( 1 + (0.623 + 0.781i)T \) |
| 67 | \( 1 + (-0.222 - 0.974i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (-0.222 + 0.974i)T \) |
| 79 | \( 1 + (-0.900 + 0.433i)T \) |
| 83 | \( 1 + (0.623 + 0.781i)T \) |
| 89 | \( 1 + (0.623 + 0.781i)T \) |
| 97 | \( 1 + (-0.222 + 0.974i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.50476944982869212472789067295, −17.394680145895157522864657843651, −16.55072103483960359233896911789, −15.85998031887130785725828716093, −15.26735278754284317887979034351, −14.64541934979125362527649173289, −14.05773634551111711719227014567, −13.19172265016164602860503048150, −12.63511536001489399598497718395, −11.94683324907481666222440299200, −10.95831413770289352362757028849, −10.22509731660884611930575208182, −9.82475240493698163277965055440, −9.21631592663237928449999010084, −8.61273263849507657162955636579, −7.374583855932558397341983146934, −6.96278360132332287436289878501, −6.30459379828925442988837426781, −5.664868523242676386383972574089, −4.94507129357114007870547431062, −4.6116466297646318693672166986, −3.6470103955073944691223873349, −2.455882565022271113853124396248, −1.41953767590306568093860878456, −0.63496914989778254304928350204,
0.86793379965353713649072582212, 1.19100661298492988863866922469, 2.34102692366515227199959362244, 2.65421150622450526385700786434, 3.842636865232254981426261775577, 4.73276763649144867740878900181, 5.236265572869246677287744730554, 5.93772159631700225693576385245, 6.87023836086628412646487390, 7.297705037713622001492242794129, 8.451982721915545641090429202321, 9.149646219072833453302487180638, 9.63305783319591269809965028589, 10.4277361604488180321411398194, 10.98145746590882546102821875381, 11.61151011493586904974162742658, 12.172531921329826332243318685485, 12.80281377298795187595767227115, 13.70286605550850522320892953698, 13.75761287490422131174073729011, 14.64276562886396169094140950904, 15.836945299363083845477537148, 16.63871105850907158936666651264, 17.069508953432599184283990660011, 17.64375965866643889209845482954