| L(s) = 1 | + (−0.900 − 0.433i)2-s + (−0.270 + 0.962i)3-s + (0.623 + 0.781i)4-s + (−0.0747 + 0.997i)5-s + (0.661 − 0.749i)6-s + (−0.222 − 0.974i)8-s + (−0.853 − 0.521i)9-s + (0.5 − 0.866i)10-s + (0.980 − 0.198i)11-s + (−0.921 + 0.388i)12-s + (−0.766 + 0.642i)13-s + (−0.939 − 0.342i)15-s + (−0.222 + 0.974i)16-s + (0.318 − 0.947i)17-s + (0.542 + 0.840i)18-s + (0.5 + 0.866i)19-s + ⋯ |
| L(s) = 1 | + (−0.900 − 0.433i)2-s + (−0.270 + 0.962i)3-s + (0.623 + 0.781i)4-s + (−0.0747 + 0.997i)5-s + (0.661 − 0.749i)6-s + (−0.222 − 0.974i)8-s + (−0.853 − 0.521i)9-s + (0.5 − 0.866i)10-s + (0.980 − 0.198i)11-s + (−0.921 + 0.388i)12-s + (−0.766 + 0.642i)13-s + (−0.939 − 0.342i)15-s + (−0.222 + 0.974i)16-s + (0.318 − 0.947i)17-s + (0.542 + 0.840i)18-s + (0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.989 - 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.989 - 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8943594749 - 0.06372215594i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8943594749 - 0.06372215594i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6178622437 + 0.2149001295i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6178622437 + 0.2149001295i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (-0.900 - 0.433i)T \) |
| 3 | \( 1 + (-0.270 + 0.962i)T \) |
| 5 | \( 1 + (-0.0747 + 0.997i)T \) |
| 11 | \( 1 + (0.980 - 0.198i)T \) |
| 13 | \( 1 + (-0.766 + 0.642i)T \) |
| 17 | \( 1 + (0.318 - 0.947i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.456 + 0.889i)T \) |
| 29 | \( 1 + (0.766 + 0.642i)T \) |
| 31 | \( 1 + (-0.921 + 0.388i)T \) |
| 37 | \( 1 + (-0.583 + 0.811i)T \) |
| 41 | \( 1 + (-0.270 - 0.962i)T \) |
| 43 | \( 1 + (0.921 + 0.388i)T \) |
| 47 | \( 1 + (-0.0747 + 0.997i)T \) |
| 53 | \( 1 + (0.921 + 0.388i)T \) |
| 59 | \( 1 + (0.318 - 0.947i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.995 - 0.0995i)T \) |
| 71 | \( 1 + (0.542 - 0.840i)T \) |
| 73 | \( 1 + (-0.826 - 0.563i)T \) |
| 79 | \( 1 + (0.878 + 0.478i)T \) |
| 83 | \( 1 + (0.0249 - 0.999i)T \) |
| 89 | \( 1 + (-0.365 + 0.930i)T \) |
| 97 | \( 1 + (-0.698 - 0.715i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.45847365739250535404399145319, −16.97850124302592896524646967497, −16.538485717541518208130784344203, −15.731494483471185977904539704490, −14.864348850754882772070750709083, −14.440912161365037972840606590968, −13.48618501392646597939022014874, −12.83259773764297301673597099890, −12.13654586784237702706074358881, −11.72188741675540357055360626633, −10.8938944255359434864624217913, −10.108100927535268094869077753073, −9.366581693080972527055198513705, −8.635390366687223896848868439236, −8.28682071858048778638409340581, −7.38919181844995951507876109789, −6.98719348022123570940563158719, −6.14444525239024245716943460953, −5.493877723848479506057844865658, −4.92714511695066101689756961050, −3.879400030383847421688896565296, −2.57356247489044623597782005718, −2.006842184462366446758059604535, −0.96413608862990328548772109983, −0.769098179102784390686687436204,
0.244537291308706494320685140664, 1.291741546094924154684605118659, 2.21445298406638344536280914762, 3.22777204789063784578129902116, 3.41789237510277465936491262186, 4.31271698598804998174034681503, 5.269848996567916713726860251454, 6.138895769003321051911349439416, 6.9393138521858403540641764463, 7.325725494634309848971713069144, 8.314485275235085202145441687769, 9.14387417292276864106921371948, 9.63333374787879460992527299565, 10.04557244273702555961282741807, 10.96006173810280172885509617825, 11.266675730414498568957848255780, 12.02591988474132546159269342087, 12.35066638751037620782649162780, 13.9453522113787841992973110925, 14.18052618378200645280545099379, 15.0002905163292050458501795969, 15.68318268804872869367574398558, 16.328909528296456927355006056810, 16.81024873375695901676966766733, 17.55529714170833266362536974570