| L(s) = 1 | + (−0.997 − 0.0697i)2-s + (0.0348 + 0.999i)3-s + (0.990 + 0.139i)4-s + (0.0348 − 0.999i)6-s + (−0.5 − 0.866i)7-s + (−0.978 − 0.207i)8-s + (−0.997 + 0.0697i)9-s + (−0.104 − 0.994i)11-s + (−0.104 + 0.994i)12-s + (0.559 + 0.829i)13-s + (0.438 + 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.374 + 0.927i)17-s + 18-s + (0.848 − 0.529i)21-s + (0.0348 + 0.999i)22-s + ⋯ |
| L(s) = 1 | + (−0.997 − 0.0697i)2-s + (0.0348 + 0.999i)3-s + (0.990 + 0.139i)4-s + (0.0348 − 0.999i)6-s + (−0.5 − 0.866i)7-s + (−0.978 − 0.207i)8-s + (−0.997 + 0.0697i)9-s + (−0.104 − 0.994i)11-s + (−0.104 + 0.994i)12-s + (0.559 + 0.829i)13-s + (0.438 + 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.374 + 0.927i)17-s + 18-s + (0.848 − 0.529i)21-s + (0.0348 + 0.999i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4917902264 - 0.2540111847i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4917902264 - 0.2540111847i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5996279384 + 0.02315869341i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5996279384 + 0.02315869341i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.997 - 0.0697i)T \) |
| 3 | \( 1 + (0.0348 + 0.999i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.104 - 0.994i)T \) |
| 13 | \( 1 + (0.559 + 0.829i)T \) |
| 17 | \( 1 + (-0.374 + 0.927i)T \) |
| 23 | \( 1 + (-0.719 - 0.694i)T \) |
| 29 | \( 1 + (-0.374 - 0.927i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.961 + 0.275i)T \) |
| 43 | \( 1 + (0.173 - 0.984i)T \) |
| 47 | \( 1 + (-0.374 - 0.927i)T \) |
| 53 | \( 1 + (0.990 + 0.139i)T \) |
| 59 | \( 1 + (-0.241 - 0.970i)T \) |
| 61 | \( 1 + (-0.719 - 0.694i)T \) |
| 67 | \( 1 + (0.848 + 0.529i)T \) |
| 71 | \( 1 + (-0.882 - 0.469i)T \) |
| 73 | \( 1 + (0.559 - 0.829i)T \) |
| 79 | \( 1 + (0.0348 + 0.999i)T \) |
| 83 | \( 1 + (0.669 - 0.743i)T \) |
| 89 | \( 1 + (0.961 - 0.275i)T \) |
| 97 | \( 1 + (0.848 - 0.529i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.334746302280881747634469263111, −23.15848342569931832240581842366, −22.49002494965091929869319728625, −21.11369668662218232388222721967, −20.15310677188422019825302196369, −19.614162096684094707703414070548, −18.6483744565686651218001875890, −17.95825230258796751638538476385, −17.59053174917706723381701319163, −16.219811277232579548960730805967, −15.54577144150055642549697575861, −14.60543009780335273829991316417, −13.3317040508418372490632941576, −12.38746892098013465851403769370, −11.81692193736259817063933275654, −10.715814763187573321911402289998, −9.591794907218694011323545608280, −8.81653852430512505070994884516, −7.88699037900819866545267396854, −7.06675746356265472526788279658, −6.19974835677442949635792891979, −5.29443226574013133784765000852, −3.1491555750456847459421128319, −2.34286989996757655300957301854, −1.237129869244644530995713968529,
0.44422001998303794986608191111, 2.15827398599618287795118012931, 3.48928590597269702743775752726, 4.14931657222776190563966235083, 5.877119782518320925647385179718, 6.54755758859782908539688799986, 7.936980140153856315443585577550, 8.71295693678647127275410623645, 9.56495458057744588491777731467, 10.47564380158001124397471025032, 10.97953381674603795919076473221, 11.9276357949190789720598401490, 13.37255754996006265094742466993, 14.29163770595289047737614564063, 15.4419026896992538963091313412, 16.16755987507131994890726855382, 16.7704707158814611586239230190, 17.43503696223830496657557319595, 18.74327881879076268791789183073, 19.431482101815253381707015318860, 20.243312304900594937945150621553, 21.04808079455502082241460936061, 21.69248404424336773926149573974, 22.76303924341615811809013889371, 23.81273340367661835526890688517