| L(s) = 1 | + (−0.281 − 0.959i)3-s + (−0.989 + 0.142i)7-s + (−0.841 + 0.540i)9-s + (−0.415 + 0.909i)11-s + (0.989 + 0.142i)13-s + (0.755 − 0.654i)17-s + (−0.654 + 0.755i)19-s + (0.415 + 0.909i)21-s + (0.755 + 0.654i)27-s + (0.654 + 0.755i)29-s + (0.959 + 0.281i)31-s + (0.989 + 0.142i)33-s + (0.540 + 0.841i)37-s + (−0.142 − 0.989i)39-s + (0.841 + 0.540i)41-s + ⋯ |
| L(s) = 1 | + (−0.281 − 0.959i)3-s + (−0.989 + 0.142i)7-s + (−0.841 + 0.540i)9-s + (−0.415 + 0.909i)11-s + (0.989 + 0.142i)13-s + (0.755 − 0.654i)17-s + (−0.654 + 0.755i)19-s + (0.415 + 0.909i)21-s + (0.755 + 0.654i)27-s + (0.654 + 0.755i)29-s + (0.959 + 0.281i)31-s + (0.989 + 0.142i)33-s + (0.540 + 0.841i)37-s + (−0.142 − 0.989i)39-s + (0.841 + 0.540i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.986 + 0.164i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.986 + 0.164i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9549285178 + 0.07927791460i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9549285178 + 0.07927791460i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8653565817 - 0.09938254513i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8653565817 - 0.09938254513i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
| good | 3 | \( 1 + (-0.281 - 0.959i)T \) |
| 7 | \( 1 + (-0.989 + 0.142i)T \) |
| 11 | \( 1 + (-0.415 + 0.909i)T \) |
| 13 | \( 1 + (0.989 + 0.142i)T \) |
| 17 | \( 1 + (0.755 - 0.654i)T \) |
| 19 | \( 1 + (-0.654 + 0.755i)T \) |
| 29 | \( 1 + (0.654 + 0.755i)T \) |
| 31 | \( 1 + (0.959 + 0.281i)T \) |
| 37 | \( 1 + (0.540 + 0.841i)T \) |
| 41 | \( 1 + (0.841 + 0.540i)T \) |
| 43 | \( 1 + (-0.281 - 0.959i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.989 + 0.142i)T \) |
| 59 | \( 1 + (-0.142 + 0.989i)T \) |
| 61 | \( 1 + (-0.959 - 0.281i)T \) |
| 67 | \( 1 + (0.909 - 0.415i)T \) |
| 71 | \( 1 + (-0.415 - 0.909i)T \) |
| 73 | \( 1 + (0.755 + 0.654i)T \) |
| 79 | \( 1 + (-0.142 + 0.989i)T \) |
| 83 | \( 1 + (0.540 + 0.841i)T \) |
| 89 | \( 1 + (0.959 - 0.281i)T \) |
| 97 | \( 1 + (-0.540 + 0.841i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.48521663921725458268657440556, −23.14735824581799655772441700957, −22.11041074544487984271308453163, −21.3572402253799925154078137926, −20.7483504792067698954892800857, −19.55943858093453923668810915819, −18.960003917602522632508590621042, −17.69924767121418483288725233370, −16.84855793572175310284222997559, −15.985841141997682612281419710757, −15.59774698669474127037931660604, −14.40014789783799455961537766148, −13.42915358369468729341760026337, −12.55614029091603494912229264213, −11.29970505943974558383211861444, −10.65102596567887517481146470058, −9.79341366285962792219227779746, −8.87457211577343269072901152818, −7.96323770939533023519533770836, −6.25839130335135912160062123227, −5.95675034487110441564882105665, −4.55641526091112250621380802573, −3.57865075161487472933592729499, −2.79358672003807576628784710721, −0.66873565506781924925733028437,
1.10998079724180501973457664545, 2.380955613729430221647778291, 3.423044845275082621985784912183, 4.90615527040762960323689193386, 6.054781663142416273417330840039, 6.69583161088116541233737436671, 7.70003330963304540105223935407, 8.63873987867467474293477055774, 9.821656030052082328457189403482, 10.70601330035713993519285951264, 11.95458452103563847125951193745, 12.519008040123114830273534866308, 13.34887268612926071108648713292, 14.15452124039111318927769990306, 15.36993026541428153070334992967, 16.3057307933955778632161386424, 17.05450729148586954561225323390, 18.2388041398303206531683558795, 18.60908588846515770718750445003, 19.564362775760390887829321190540, 20.393907927374154535252746656970, 21.386475630997656361317559496968, 22.63956249670255182273992557787, 23.12406874463977060419859790057, 23.68947469925397358344247942059