| L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s + 11-s − 12-s + 13-s + 14-s − 15-s + 16-s − 17-s − 18-s − 19-s + 20-s + 21-s − 22-s + 23-s + 24-s + 25-s − 26-s − 27-s − 28-s + ⋯ |
| L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s + 11-s − 12-s + 13-s + 14-s − 15-s + 16-s − 17-s − 18-s − 19-s + 20-s + 21-s − 22-s + 23-s + 24-s + 25-s − 26-s − 27-s − 28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6532026655\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6532026655\) |
| \(L(1)\) |
\(\approx\) |
\(0.6218932215\) |
| \(L(1)\) |
\(\approx\) |
\(0.6218932215\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 269 | \( 1 \) |
| good | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.73256509851077808333598143191, −25.09331278876363130871540299106, −24.150827564876309736985913239518, −22.96765993490631218883723753844, −22.05269202187838472675416283903, −21.27341158074738718084357725977, −20.1681164675045031425478844372, −19.042846159830083182018949186738, −18.31957155674643697523846276014, −17.34938957700878474983881355409, −16.80621006128482024851410819147, −16.000420658157678833305364550550, −14.896106057484915076548045127879, −13.25234189768095396903390110372, −12.559994563099513800595414999006, −11.15903158740569814185774963839, −10.66349035453272764713736156500, −9.419849443814690904328178005944, −8.985795246851946041715620106064, −7.08683370976132335859211674498, −6.36722639390807590089416659566, −5.76765533012140547053572147995, −3.92236704292378661257053207381, −2.23953293562152059858703567915, −0.98214167111318163028497643061,
0.98214167111318163028497643061, 2.23953293562152059858703567915, 3.92236704292378661257053207381, 5.76765533012140547053572147995, 6.36722639390807590089416659566, 7.08683370976132335859211674498, 8.985795246851946041715620106064, 9.419849443814690904328178005944, 10.66349035453272764713736156500, 11.15903158740569814185774963839, 12.559994563099513800595414999006, 13.25234189768095396903390110372, 14.896106057484915076548045127879, 16.000420658157678833305364550550, 16.80621006128482024851410819147, 17.34938957700878474983881355409, 18.31957155674643697523846276014, 19.042846159830083182018949186738, 20.1681164675045031425478844372, 21.27341158074738718084357725977, 22.05269202187838472675416283903, 22.96765993490631218883723753844, 24.150827564876309736985913239518, 25.09331278876363130871540299106, 25.73256509851077808333598143191