| L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)6-s − 7-s + 8-s + (−0.5 − 0.866i)9-s + (0.5 + 0.866i)10-s − 11-s − 12-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)17-s + 18-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)6-s − 7-s + 8-s + (−0.5 − 0.866i)9-s + (0.5 + 0.866i)10-s − 11-s − 12-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)17-s + 18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 247 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 247 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.009828437007 + 0.03060390722i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.009828437007 + 0.03060390722i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6891405191 - 0.06767788018i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6891405191 - 0.06767788018i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.77062019940736163284538815102, −25.20744256790742753584739546174, −23.138815771964745544043436754856, −22.3906097872564918386494375922, −21.674878312455731756378581283329, −20.889214554359514551948368567104, −19.94008995160704059281816282656, −19.09268701443065475182605500163, −18.26843702950235029435020489389, −17.20802054579157796037800504408, −16.057156965368427851975061358614, −15.305104581583048551637524692517, −13.6965225750952231337518044671, −13.45096769199532068961485744788, −11.839474586882663763572554758881, −10.736200218377580640867824736398, −9.99783077700618920989518186636, −9.46505388649757119749928987863, −8.222502676990758093692531986328, −7.04269067803781639264968063458, −5.451959069218245281652909395324, −4.0096750632272249714731861419, −2.935860843582099180816546975260, −2.35187447556834674256835308090, −0.01156185522804334774354710382,
1.2556626024540975632942661001, 2.65232550302550611231049021595, 4.514614536286377570843114864222, 5.92956621631004524409662052816, 6.52294445018728074461697059916, 7.8504225845657938213056836246, 8.58274277683328361223018922419, 9.49709745813123576120432524274, 10.47183025065657975848968348353, 12.41271951335125476519835445186, 13.1389815589200180540359934556, 13.79926899082053761903932990772, 15.038332522636545346561215838413, 16.03852138858030830983350383258, 16.883947715067255248021558897561, 17.89122912864114549606058867817, 18.60566636415421807963467269124, 19.65810934883570145197049460788, 20.251742745259532491949800544096, 21.64407324644112489217271801147, 23.01081358923681954690630379125, 23.77868941262223789026359467924, 24.52008049450574544977421992639, 25.334277598617775090093176201271, 26.000882944178026547699755584906