| L(s) = 1 | + (−0.978 − 0.207i)7-s + (−0.669 + 0.743i)11-s + (0.913 + 0.406i)13-s + (−0.669 − 0.743i)17-s + (−0.913 + 0.406i)19-s + (0.309 − 0.951i)23-s + (−0.809 − 0.587i)29-s + (−0.5 + 0.866i)37-s + (0.104 − 0.994i)41-s + (−0.913 + 0.406i)43-s + (0.809 − 0.587i)47-s + (0.913 + 0.406i)49-s + (0.978 − 0.207i)53-s + (−0.104 − 0.994i)59-s − 61-s + ⋯ |
| L(s) = 1 | + (−0.978 − 0.207i)7-s + (−0.669 + 0.743i)11-s + (0.913 + 0.406i)13-s + (−0.669 − 0.743i)17-s + (−0.913 + 0.406i)19-s + (0.309 − 0.951i)23-s + (−0.809 − 0.587i)29-s + (−0.5 + 0.866i)37-s + (0.104 − 0.994i)41-s + (−0.913 + 0.406i)43-s + (0.809 − 0.587i)47-s + (0.913 + 0.406i)49-s + (0.978 − 0.207i)53-s + (−0.104 − 0.994i)59-s − 61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.855 + 0.517i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.855 + 0.517i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9939472064 + 0.2769993285i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9939472064 + 0.2769993285i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8139644516 + 0.004405048951i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8139644516 + 0.004405048951i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
| good | 7 | \( 1 + (-0.978 - 0.207i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.913 + 0.406i)T \) |
| 17 | \( 1 + (-0.669 - 0.743i)T \) |
| 19 | \( 1 + (-0.913 + 0.406i)T \) |
| 23 | \( 1 + (0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.104 - 0.994i)T \) |
| 43 | \( 1 + (-0.913 + 0.406i)T \) |
| 47 | \( 1 + (0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.978 - 0.207i)T \) |
| 59 | \( 1 + (-0.104 - 0.994i)T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.978 + 0.207i)T \) |
| 73 | \( 1 + (0.669 - 0.743i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (-0.104 + 0.994i)T \) |
| 89 | \( 1 + (0.309 + 0.951i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.73843940610825549598877740617, −19.18546177949426437876224724418, −18.47393615045550296876847599507, −17.74938410645919955606235443058, −16.83971056678327519394051358848, −16.16702135011965641983499163408, −15.46695331530222115019156772090, −14.95962820598397693958657042877, −13.66978644225750298764227250731, −13.187380437017891411502046883396, −12.706941014509474908319946834965, −11.59347194035259259305464785982, −10.75741730245841417693273751171, −10.33943800141476005465078437782, −9.07592909168807823011155633940, −8.75440440728428814121414329764, −7.744828274923475081455213441398, −6.8131548554484540898113845801, −5.98857416004639134602425520356, −5.49529754960755537397762668684, −4.208851137248694238758188793, −3.42040600750695736027612850526, −2.69475432623250512694834294478, −1.56035971269194905239556653177, −0.335578080842565972965302291731,
0.49344883245865667996619459082, 1.86911235395598338522660185607, 2.66294710739086658748493679888, 3.6961622649838324872019770029, 4.41992466663454573663454929143, 5.38593343281327450250100190385, 6.44529046676937183059265636105, 6.83970347440012639921966138049, 7.85620910565328669929060140141, 8.7715312337830595706381239725, 9.443180837864948551392353331, 10.338388091807941838701330263996, 10.85101326295345332522920105390, 11.91455369803423350467162015248, 12.655328271749306670341960363631, 13.35120683744071297340171381238, 13.87059792931563963606143019437, 15.10264425570410923556138626581, 15.491139634044654087353728206513, 16.432303680521424832129920247791, 16.87597968431377599626144934142, 17.92372634329130796034357717004, 18.622119646226023879117123171734, 19.11976398585033013595722364824, 20.15309377413786596540870150794