| L(s) = 1 | + (0.913 + 0.406i)7-s + (0.104 + 0.994i)11-s + (0.669 + 0.743i)13-s + (0.104 − 0.994i)17-s + (−0.669 + 0.743i)19-s + (−0.809 − 0.587i)23-s + (0.309 + 0.951i)29-s + (−0.5 − 0.866i)37-s + (0.978 + 0.207i)41-s + (−0.669 + 0.743i)43-s + (−0.309 + 0.951i)47-s + (0.669 + 0.743i)49-s + (−0.913 + 0.406i)53-s + (−0.978 + 0.207i)59-s − 61-s + ⋯ |
| L(s) = 1 | + (0.913 + 0.406i)7-s + (0.104 + 0.994i)11-s + (0.669 + 0.743i)13-s + (0.104 − 0.994i)17-s + (−0.669 + 0.743i)19-s + (−0.809 − 0.587i)23-s + (0.309 + 0.951i)29-s + (−0.5 − 0.866i)37-s + (0.978 + 0.207i)41-s + (−0.669 + 0.743i)43-s + (−0.309 + 0.951i)47-s + (0.669 + 0.743i)49-s + (−0.913 + 0.406i)53-s + (−0.978 + 0.207i)59-s − 61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.978 + 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.978 + 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1125302894 + 1.085983901i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1125302894 + 1.085983901i\) |
| \(L(1)\) |
\(\approx\) |
\(1.033305814 + 0.2477745979i\) |
| \(L(1)\) |
\(\approx\) |
\(1.033305814 + 0.2477745979i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
| good | 7 | \( 1 + (0.913 + 0.406i)T \) |
| 11 | \( 1 + (0.104 + 0.994i)T \) |
| 13 | \( 1 + (0.669 + 0.743i)T \) |
| 17 | \( 1 + (0.104 - 0.994i)T \) |
| 19 | \( 1 + (-0.669 + 0.743i)T \) |
| 23 | \( 1 + (-0.809 - 0.587i)T \) |
| 29 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.978 + 0.207i)T \) |
| 43 | \( 1 + (-0.669 + 0.743i)T \) |
| 47 | \( 1 + (-0.309 + 0.951i)T \) |
| 53 | \( 1 + (-0.913 + 0.406i)T \) |
| 59 | \( 1 + (-0.978 + 0.207i)T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.913 - 0.406i)T \) |
| 73 | \( 1 + (-0.104 - 0.994i)T \) |
| 79 | \( 1 + (-0.104 + 0.994i)T \) |
| 83 | \( 1 + (-0.978 - 0.207i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.6809372934510496838859862960, −18.84112493427086993546642031257, −18.1008473754296942450091710100, −17.281821449550132605454780895278, −16.922486119162434829760612871, −15.74338547622928908344854195513, −15.29228624326386314838441425106, −14.34723163714069932763980442702, −13.66331419893570372723736217414, −13.09700740080195250398575190065, −12.04842961820079300933832276562, −11.25356217095447120761286687657, −10.71760985018925337634834156547, −9.99289353173002285637439014531, −8.75260031762362520147949766659, −8.27137874375615061821693550791, −7.62091102136946928789133774225, −6.43203673296235412896764483003, −5.83462370045812804934320200589, −4.89411757987836954891178312809, −3.97662482182835747174431073336, −3.27111268755394079165863746550, −2.05527159505901159476626317895, −1.17426332147773927923145072396, −0.187846266280859662950943239985,
1.361948166253357187422972592549, 1.953660903412082405900355633713, 2.97459360527401035889560417053, 4.25976212360176744224204784793, 4.65198973673513784028199569797, 5.71335572842369059437888717419, 6.5240392401084705975683254992, 7.42937921495492364599903991812, 8.167266040248674593048647663166, 8.98541492021025278596980525551, 9.67158542880799027687954685845, 10.68301984380269682171505771651, 11.30175841820556792022250300007, 12.21510811445838786002968643522, 12.59787203057265409458713200586, 13.90235425484554065196201972269, 14.32318132188729895082839639733, 15.02929133059508518623788583979, 15.941205292746376482359165751867, 16.52354420404379050435369408245, 17.50051288754451661379334752177, 18.16861306524613929507624113441, 18.57428449753458460208338883039, 19.60432429151368019230990676708, 20.39520783647653108828682699421