| L(s) = 1 | + (0.970 − 0.239i)2-s + (0.120 + 0.992i)3-s + (0.885 − 0.464i)4-s + (−0.568 − 0.822i)5-s + (0.354 + 0.935i)6-s + (0.748 − 0.663i)7-s + (0.748 − 0.663i)8-s + (−0.970 + 0.239i)9-s + (−0.748 − 0.663i)10-s + (0.970 + 0.239i)11-s + (0.568 + 0.822i)12-s + (0.568 − 0.822i)14-s + (0.748 − 0.663i)15-s + (0.568 − 0.822i)16-s + (−0.748 + 0.663i)17-s + (−0.885 + 0.464i)18-s + ⋯ |
| L(s) = 1 | + (0.970 − 0.239i)2-s + (0.120 + 0.992i)3-s + (0.885 − 0.464i)4-s + (−0.568 − 0.822i)5-s + (0.354 + 0.935i)6-s + (0.748 − 0.663i)7-s + (0.748 − 0.663i)8-s + (−0.970 + 0.239i)9-s + (−0.748 − 0.663i)10-s + (0.970 + 0.239i)11-s + (0.568 + 0.822i)12-s + (0.568 − 0.822i)14-s + (0.748 − 0.663i)15-s + (0.568 − 0.822i)16-s + (−0.748 + 0.663i)17-s + (−0.885 + 0.464i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.014945780 - 0.1689482568i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.014945780 - 0.1689482568i\) |
| \(L(1)\) |
\(\approx\) |
\(1.794320132 - 0.07728412045i\) |
| \(L(1)\) |
\(\approx\) |
\(1.794320132 - 0.07728412045i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| good | 2 | \( 1 + (0.970 - 0.239i)T \) |
| 3 | \( 1 + (0.120 + 0.992i)T \) |
| 5 | \( 1 + (-0.568 - 0.822i)T \) |
| 7 | \( 1 + (0.748 - 0.663i)T \) |
| 11 | \( 1 + (0.970 + 0.239i)T \) |
| 17 | \( 1 + (-0.748 + 0.663i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.970 + 0.239i)T \) |
| 31 | \( 1 + (0.354 + 0.935i)T \) |
| 37 | \( 1 + (0.354 + 0.935i)T \) |
| 41 | \( 1 + (-0.120 - 0.992i)T \) |
| 43 | \( 1 + (-0.354 + 0.935i)T \) |
| 47 | \( 1 + (-0.885 - 0.464i)T \) |
| 53 | \( 1 + (-0.748 + 0.663i)T \) |
| 59 | \( 1 + (-0.568 - 0.822i)T \) |
| 61 | \( 1 + (-0.748 - 0.663i)T \) |
| 67 | \( 1 + (-0.885 - 0.464i)T \) |
| 71 | \( 1 + (-0.120 - 0.992i)T \) |
| 73 | \( 1 + (0.970 + 0.239i)T \) |
| 79 | \( 1 + (0.885 + 0.464i)T \) |
| 83 | \( 1 + (-0.120 + 0.992i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.568 + 0.822i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.594591869746365166344425207051, −26.39869605654501052347231000175, −25.26796447367229336136712721800, −24.62267634835613561931563781674, −23.79695236192931519250019947091, −22.82440121067668943962026486023, −22.13249863374212142339854133646, −20.92606972344818937281997967069, −19.74796848114621022901913974988, −18.93271814661741556564970207023, −17.83119464943600547782430116818, −16.75611538821891800859648413180, −15.16780347231495996444649892890, −14.7237608768939581028648076936, −13.7266195488079980697302131266, −12.62074955457923762403053302667, −11.48393923792593830598108387996, −11.221116893700298865293974023944, −8.80770298899375000432065452744, −7.719296400007236658792849391676, −6.78903447342518776160295467122, −5.92026309972537241677486855401, −4.383196532886697306645197600774, −2.99020539342198741672308470672, −1.94584268849531270470723952991,
1.61420192845068322317751915267, 3.52302135447067085607865401671, 4.38973014567394388846425063931, 4.996525889476614890842779538850, 6.57937572893229940730400795767, 8.10564229925296881509237629802, 9.26765053869391343745583987742, 10.71670035019898336217561404305, 11.34369299577596876629226006556, 12.495485456688208052961626260385, 13.67049897584849147414942043248, 14.80058533354995006040111602612, 15.33032500564560820745052994360, 16.65243757784475793863761274566, 17.16359401449584919870774412540, 19.43578790916003635699237492454, 20.05044150304511013841313176563, 20.8545147812969948060140224099, 21.61170542365980367739505111906, 22.71927622581085744299886859374, 23.55223284082028691428732391346, 24.45737749231430178635647545197, 25.44729994542951131269138903107, 26.821615752842184445768202220365, 27.71219210137291961914163800658