Distribution of groups in curves of genus 10 with quotient genus 0
Isomorphism class |
GAP/Magma Group |
Distinct generating vectors |
$C_2$ |
[2, 1] |
1
|
$C_3$ |
[3, 1] |
5
|
$C_4$ |
[4, 1] |
10
|
$C_2^2$ |
[4, 2] |
21
|
$C_5$ |
[5, 1] |
24
|
$S_3$ |
[6, 1] |
3636
|
$C_6$ |
[6, 2] |
35
|
$C_8$ |
[8, 1] |
24
|
$D_4$ |
[8, 3] |
93
|
$Q_8$ |
[8, 4] |
13
|
$C_9$ |
[9, 1] |
20
|
$C_3^2$ |
[9, 2] |
184
|
$D_5$ |
[10, 1] |
1250
|
$C_{10}$ |
[10, 2] |
18
|
$C_{11}$ |
[11, 1] |
65
|
$C_3:C_4$ |
[12, 1] |
14
|
$C_{12}$ |
[12, 2] |
26
|
$A_4$ |
[12, 3] |
72
|
$D_6$ |
[12, 4] |
174
|
$C_2\times C_6$ |
[12, 5] |
56
|
$C_{14}$ |
[14, 2] |
14
|
$C_{15}$ |
[15, 1] |
24
|
$C_{16}$ |
[16, 1] |
8
|
$D_8$ |
[16, 7] |
4
|
$\SD_{16}$ |
[16, 8] |
34
|
$Q_{16}$ |
[16, 9] |
4
|
$D_9$ |
[18, 1] |
3240
|
$C_{18}$ |
[18, 2] |
12
|
$C_3\times S_3$ |
[18, 3] |
75
|
$C_3:S_3$ |
[18, 4] |
3184
|
$C_3\times C_6$ |
[18, 5] |
148
|
$C_5:C_4$ |
[20, 1] |
2
|
$C_{20}$ |
[20, 2] |
4
|
$D_{10}$ |
[20, 4] |
102
|
$C_7:C_3$ |
[21, 1] |
28
|
$C_{21}$ |
[21, 2] |
16
|
$D_{11}$ |
[22, 1] |
30
|
$C_{22}$ |
[22, 2] |
55
|
$C_{24}$ |
[24, 2] |
20
|
$\SL(2,3)$ |
[24, 3] |
10
|
$D_{12}$ |
[24, 6] |
68
|
$C_3:D_4$ |
[24, 8] |
36
|
$C_3\times D_4$ |
[24, 10] |
10
|
$C_3\times Q_8$ |
[24, 11] |
2
|
$S_4$ |
[24, 12] |
16
|
$C_{25}$ |
[25, 1] |
40
|
$C_3\times C_9$ |
[27, 2] |
18
|
$\He_3$ |
[27, 3] |
106
|
$C_9:C_3$ |
[27, 4] |
2
|
$C_3^3$ |
[27, 5] |
468
|
$C_{28}$ |
[28, 2] |
12
|
$C_3\times D_5$ |
[30, 2] |
8
|
$D_{15}$ |
[30, 3] |
8
|
$C_{30}$ |
[30, 4] |
12
|
$C_{33}$ |
[33, 1] |
20
|
$D_{18}$ |
[36, 4] |
72
|
$C_3:C_{12}$ |
[36, 6] |
8
|
$C_3\times C_{12}$ |
[36, 8] |
48
|
$C_3^2:C_4$ |
[36, 9] |
20
|
$S_3^2$ |
[36, 10] |
22
|
$C_3\times A_4$ |
[36, 11] |
14
|
$C_6\times S_3$ |
[36, 12] |
16
|
$C_6:S_3$ |
[36, 13] |
72
|
$C_6^2$ |
[36, 14] |
48
|
$C_{40}$ |
[40, 2] |
8
|
$C_5:Q_8$ |
[40, 4] |
4
|
$D_{20}$ |
[40, 6] |
4
|
$C_7:C_6$ |
[42, 2] |
4
|
$C_{42}$ |
[42, 6] |
12
|
$C_{11}:C_4$ |
[44, 1] |
5
|
$D_{22}$ |
[44, 3] |
5
|
$C_2\times C_{22}$ |
[44, 4] |
30
|
$C_3\times \SD_{16}$ |
[48, 26] |
4
|
$\GL(2,3)$ |
[48, 29] |
32
|
$S_3\times C_9$ |
[54, 4] |
6
|
$C_3^2:C_6$ |
[54, 5] |
15
|
$C_3^2:S_3$ |
[54, 8] |
60
|
$C_2\times \He_3$ |
[54, 10] |
24
|
$S_3\times C_3^2$ |
[54, 12] |
24
|
$C_3^2:C_6$ |
[54, 13] |
24
|
$A_5$ |
[60, 5] |
20
|
$C_3\times D_{10}$ |
[60, 10] |
8
|
$C_{21}:C_3$ |
[63, 3] |
12
|
$C_2^2:D_9$ |
[72, 15] |
36
|
$C_3:D_{12}$ |
[72, 23] |
4
|
$C_3\times \SL(2,3)$ |
[72, 25] |
6
|
$C_3\times D_{12}$ |
[72, 28] |
8
|
$C_6\wr C_2$ |
[72, 30] |
4
|
$F_9$ |
[72, 39] |
2
|
$\SOPlus(4,2)$ |
[72, 40] |
4
|
$\PSU(3,2)$ |
[72, 41] |
4
|
$C_3\times S_4$ |
[72, 42] |
2
|
$C_3:S_4$ |
[72, 43] |
24
|
$C_{40}:C_2$ |
[80, 6] |
8
|
$C_3\wr C_3$ |
[81, 7] |
12
|
$\He_3:C_3$ |
[81, 9] |
18
|
$C_{11}:D_4$ |
[88, 7] |
10
|
$\He_3:C_4$ |
[108, 15] |
6
|
$C_3^2:D_6$ |
[108, 17] |
4
|
$C_3^2:A_4$ |
[108, 22] |
18
|
$C_3^2:D_6$ |
[108, 25] |
4
|
$C_3^3:C_4$ |
[108, 37] |
4
|
$C_3\times S_3^2$ |
[108, 38] |
2
|
$C_3:S_3^2$ |
[108, 40] |
2
|
$C_3\times \GL(2,3)$ |
[144, 122] |
4
|
$F_9:C_2$ |
[144, 182] |
2
|
$\He_3.C_6$ |
[162, 14] |
6
|
$\PSL(2,7)$ |
[168, 42] |
2
|
$\GL(2,4)$ |
[180, 19] |
4
|
$\He_3:D_4$ |
[216, 87] |
2
|
$C_3^2:S_4$ |
[216, 92] |
2
|
$\PU(3,2)$ |
[216, 153] |
4
|
$S_3^2:S_3$ |
[216, 158] |
2
|
$C_3^3:A_4$ |
[324, 160] |
4
|
$A_6$ |
[360, 118] |
4
|
$C_3^2:\GL(2,3)$ |
[432, 734] |
2
|