Refined passport label |
Genus |
Quotient genus |
Group |
Group order |
Dimension |
Signature |
Hyperelliptic |
Cyclic trigonal |
Generating vectors |
3.8-5.0.2-2-2-2-2.2 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.23 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.19 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.8 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.3 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.13 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.7 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.17 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.20 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.10 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.28 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,4)(2,3)(5,8)(6,7),\ldots$ |
3.8-5.0.2-2-2-2-2.26 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,4)(2,3)(5,8)(6,7),\ldots$ |
3.8-5.0.2-2-2-2-2.25 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,4)(2,3)(5,8)(6,7),\ldots$ |
3.8-5.0.2-2-2-2-2.24 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.6 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.5 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.9 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.15 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.27 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,4)(2,3)(5,8)(6,7),\ldots$ |
3.8-5.0.2-2-2-2-2.4 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.1 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.18 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.16 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.11 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.21 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.14 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
3.8-5.0.2-2-2-2-2.22 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
3.8-5.0.2-2-2-2-2.12 |
$3$ |
$0$ |
$C_2^3$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.22 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.19 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.18 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.17 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.16 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.14 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.60 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.58 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.54 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.13 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.12 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.52 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.51 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.49 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.11 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.48 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.47 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.53 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.46 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,3)(2,4)(5,7)(6,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.42 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.9 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-5.0.2-2-2-2-2-2.40 |
$5$ |
$0$ |
$C_2^3$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |