Refined passport label |
Genus |
Quotient genus |
Group |
Group order |
Dimension |
Signature |
Hyperelliptic |
Cyclic trigonal |
Generating vectors |
2.8-4.0.4-4-4.1 |
$2$ |
$0$ |
$Q_8$ |
$8$ |
$0$ |
$[ 0; 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
3.8-4.1.2.1 |
$3$ |
$1$ |
$Q_8$ |
$8$ |
$1$ |
$[ 1; 2 ]$ |
|
|
$(1,5,2,6)(3,8,4,7),\ldots$ |
4.8-4.0.2-4-4-4.1 |
$4$ |
$0$ |
$Q_8$ |
$8$ |
$1$ |
$[ 0; 2, 4, 4, 4 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
5.8-4.0.4-4-4-4.2 |
$5$ |
$0$ |
$Q_8$ |
$8$ |
$1$ |
$[ 0; 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
5.8-4.0.4-4-4-4.3 |
$5$ |
$0$ |
$Q_8$ |
$8$ |
$1$ |
$[ 0; 4, 4, 4, 4 ]$ |
|
|
$(1,5,2,6)(3,8,4,7),\ldots$ |
5.8-4.0.4-4-4-4.1 |
$5$ |
$0$ |
$Q_8$ |
$8$ |
$1$ |
$[ 0; 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
6.8-4.0.2-2-4-4-4.1 |
$6$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 2, 2, 4, 4, 4 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
7.8-4.0.2-4-4-4-4.3 |
$7$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
7.8-4.0.2-4-4-4-4.1 |
$7$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
7.8-4.0.2-4-4-4-4.2 |
$7$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
8.8-4.0.4-4-4-4-4.2 |
$8$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
8.8-4.0.4-4-4-4-4.3 |
$8$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
8.8-4.0.4-4-4-4-4.1 |
$8$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
8.8-4.0.2-2-2-4-4-4.1 |
$8$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 4, 4, 4 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
9.8-4.0.2-2-4-4-4-4.3 |
$9$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
9.8-4.0.2-2-4-4-4-4.2 |
$9$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
9.8-4.0.2-2-4-4-4-4.1 |
$9$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
10.8-4.0.2-4-4-4-4-4.3 |
$10$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 2, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
10.8-4.0.2-4-4-4-4-4.2 |
$10$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 2, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
10.8-4.0.2-4-4-4-4-4.1 |
$10$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 2, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
10.8-4.0.2-2-2-2-4-4-4.1 |
$10$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 2, 2, 2, 4, 4, 4 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
11.8-4.0.4-4-4-4-4-4.7 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,5,2,6)(3,8,4,7),\ldots$ |
11.8-4.0.4-4-4-4-4-4.3 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
11.8-4.0.4-4-4-4-4-4.4 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
11.8-4.0.4-4-4-4-4-4.5 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
11.8-4.0.4-4-4-4-4-4.6 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,5,2,6)(3,8,4,7),\ldots$ |
11.8-4.0.4-4-4-4-4-4.1 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
11.8-4.0.4-4-4-4-4-4.2 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$3$ |
$[ 0; 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
11.8-4.0.2-2-2-4-4-4-4.1 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
11.8-4.0.2-2-2-4-4-4-4.3 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
11.8-4.0.2-2-2-4-4-4-4.2 |
$11$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
12.8-4.0.2-2-4-4-4-4-4.1 |
$12$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 2, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
12.8-4.0.2-2-4-4-4-4-4.3 |
$12$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 2, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
12.8-4.0.2-2-4-4-4-4-4.2 |
$12$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 2, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
12.8-4.0.2-2-2-2-2-4-4-4.1 |
$12$ |
$0$ |
$Q_8$ |
$8$ |
$5$ |
$[ 0; 2, 2, 2, 2, 2, 4, 4, 4 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-4-4-4-4-4-4.2 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-4-4-4-4-4-4.1 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-4-4-4-4-4-4.3 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-4-4-4-4-4-4.4 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-4-4-4-4-4-4.5 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-4-4-4-4-4-4.6 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-4-4-4-4-4-4.7 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 2, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-2-2-2-4-4-4-4.1 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$5$ |
$[ 0; 2, 2, 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-2-2-2-4-4-4-4.2 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$5$ |
$[ 0; 2, 2, 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
13.8-4.0.2-2-2-2-4-4-4-4.3 |
$13$ |
$0$ |
$Q_8$ |
$8$ |
$5$ |
$[ 0; 2, 2, 2, 2, 4, 4, 4, 4 ]$ |
|
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
14.8-4.0.4-4-4-4-4-4-4.4 |
$14$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 4, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
14.8-4.0.4-4-4-4-4-4-4.5 |
$14$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 4, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
14.8-4.0.4-4-4-4-4-4-4.6 |
$14$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 4, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
14.8-4.0.4-4-4-4-4-4-4.1 |
$14$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 4, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |
14.8-4.0.4-4-4-4-4-4-4.2 |
$14$ |
$0$ |
$Q_8$ |
$8$ |
$4$ |
$[ 0; 4, 4, 4, 4, 4, 4, 4 ]$ |
|
|
$(1,3,2,4)(5,7,6,8),\ldots$ |