Refined passport label |
Genus |
Quotient genus |
Group |
Group order |
Dimension |
Signature |
Hyperelliptic |
Cyclic trigonal |
Generating vectors |
2.12-5.0.2-6-6.1 |
$2$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
2.12-5.0.2-6-6.5 |
$2$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 2, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
2.12-5.0.2-6-6.2 |
$2$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
2.12-5.0.2-6-6.3 |
$2$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 2, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
2.12-5.0.2-6-6.6 |
$2$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 2, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
2.12-5.0.2-6-6.4 |
$2$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 2, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
4.12-5.0.6-6-6.2 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 6, 6, 6 ]$ |
|
|
$(1,6,2,4,3,5)(7,12,8,10,9,11),\ldots$ |
4.12-5.0.6-6-6.1 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$0$ |
$[ 0; 6, 6, 6 ]$ |
|
|
$(1,5,3,4,2,6)(7,11,9,10,8,12),\ldots$ |
4.12-5.0.2-2-3-6.2 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 3, 6 ]$ |
|
✓ |
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
4.12-5.0.2-2-3-6.6 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 3, 6 ]$ |
|
✓ |
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
4.12-5.0.2-2-3-6.5 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 3, 6 ]$ |
|
✓ |
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
4.12-5.0.2-2-3-6.1 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 3, 6 ]$ |
|
✓ |
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
4.12-5.0.2-2-3-6.4 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 3, 6 ]$ |
|
✓ |
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
4.12-5.0.2-2-3-6.3 |
$4$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 3, 6 ]$ |
|
✓ |
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
5.12-5.0.2-2-6-6.12 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
5.12-5.0.2-2-6-6.9 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
5.12-5.0.2-2-6-6.3 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
5.12-5.0.2-2-6-6.2 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
5.12-5.0.2-2-6-6.1 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
5.12-5.0.2-2-6-6.11 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
5.12-5.0.2-2-6-6.5 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
5.12-5.0.2-2-6-6.7 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
5.12-5.0.2-2-6-6.8 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
5.12-5.0.2-2-6-6.10 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
5.12-5.0.2-2-6-6.4 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
5.12-5.0.2-2-6-6.6 |
$5$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 2, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
6.12-5.0.2-3-6-6.2 |
$6$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 3, 6, 6 ]$ |
|
✓ |
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
6.12-5.0.2-3-6-6.1 |
$6$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 3, 6, 6 ]$ |
|
✓ |
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
6.12-5.0.2-3-6-6.6 |
$6$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 3, 6, 6 ]$ |
|
✓ |
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
6.12-5.0.2-3-6-6.5 |
$6$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 3, 6, 6 ]$ |
|
✓ |
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
6.12-5.0.2-3-6-6.4 |
$6$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 3, 6, 6 ]$ |
|
✓ |
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
6.12-5.0.2-3-6-6.3 |
$6$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 3, 6, 6 ]$ |
|
✓ |
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
6.12-5.0.2-2-2-3-3.1 |
$6$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$2$ |
$[ 0; 2, 2, 2, 3, 3 ]$ |
|
✓ |
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-6-6-6.12 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
7.12-5.0.2-6-6-6.10 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
7.12-5.0.2-6-6-6.11 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
7.12-5.0.2-6-6-6.5 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
7.12-5.0.2-6-6-6.9 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,10)(2,11)(3,12)(4,7)(5,8)(6,9),\ldots$ |
7.12-5.0.2-6-6-6.7 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
7.12-5.0.2-6-6-6.6 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
7.12-5.0.2-6-6-6.2 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-6-6-6.1 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-6-6-6.8 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
7.12-5.0.2-6-6-6.3 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-6-6-6.4 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$1$ |
$[ 0; 2, 6, 6, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-2-2-3-6.2 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$2$ |
$[ 0; 2, 2, 2, 3, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-2-2-3-6.12 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$2$ |
$[ 0; 2, 2, 2, 3, 6 ]$ |
|
|
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12),\ldots$ |
7.12-5.0.2-2-2-3-6.4 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$2$ |
$[ 0; 2, 2, 2, 3, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-2-2-3-6.1 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$2$ |
$[ 0; 2, 2, 2, 3, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
7.12-5.0.2-2-2-3-6.3 |
$7$ |
$0$ |
$C_2\times C_6$ |
$12$ |
$2$ |
$[ 0; 2, 2, 2, 3, 6 ]$ |
|
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |