| Refined passport label |
Genus |
Quotient genus |
Group |
Group order |
Dimension |
Signature |
Hyperelliptic |
Cyclic trigonal |
Generating vectors |
| 4.10-1.0.2-2-5-5.2 |
$4$ |
$0$ |
$D_5$ |
$10$ |
$1$ |
$[ 0; 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 4.10-1.0.2-2-5-5.1 |
$4$ |
$0$ |
$D_5$ |
$10$ |
$1$ |
$[ 0; 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 4.10-1.0.2-2-5-5.3 |
$4$ |
$0$ |
$D_5$ |
$10$ |
$1$ |
$[ 0; 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 5.10-1.0.2-2-2-2-5.1 |
$5$ |
$0$ |
$D_5$ |
$10$ |
$2$ |
$[ 0; 2, 2, 2, 2, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 5.10-1.0.2-2-2-2-5.2 |
$5$ |
$0$ |
$D_5$ |
$10$ |
$2$ |
$[ 0; 2, 2, 2, 2, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 6.10-1.0.2-2-2-2-2-2.1 |
$6$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 8.10-1.0.2-2-5-5-5.1 |
$8$ |
$0$ |
$D_5$ |
$10$ |
$2$ |
$[ 0; 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 8.10-1.0.2-2-5-5-5.2 |
$8$ |
$0$ |
$D_5$ |
$10$ |
$2$ |
$[ 0; 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 8.10-1.0.2-2-5-5-5.3 |
$8$ |
$0$ |
$D_5$ |
$10$ |
$2$ |
$[ 0; 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 8.10-1.0.2-2-5-5-5.4 |
$8$ |
$0$ |
$D_5$ |
$10$ |
$2$ |
$[ 0; 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 9.10-1.0.2-2-2-2-5-5.1 |
$9$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 9.10-1.0.2-2-2-2-5-5.2 |
$9$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 9.10-1.0.2-2-2-2-5-5.3 |
$9$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 10.10-1.0.2-2-2-2-2-2-5.1 |
$10$ |
$0$ |
$D_5$ |
$10$ |
$4$ |
$[ 0; 2, 2, 2, 2, 2, 2, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 10.10-1.0.2-2-2-2-2-2-5.2 |
$10$ |
$0$ |
$D_5$ |
$10$ |
$4$ |
$[ 0; 2, 2, 2, 2, 2, 2, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 11.10-1.0.2-2-2-2-2-2-2-2.1 |
$11$ |
$0$ |
$D_5$ |
$10$ |
$5$ |
$[ 0; 2, 2, 2, 2, 2, 2, 2, 2 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 12.10-1.0.2-2-5-5-5-5.1 |
$12$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 5, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 12.10-1.0.2-2-5-5-5-5.2 |
$12$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 5, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 12.10-1.0.2-2-5-5-5-5.3 |
$12$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 5, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 12.10-1.0.2-2-5-5-5-5.4 |
$12$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 5, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 12.10-1.0.2-2-5-5-5-5.5 |
$12$ |
$0$ |
$D_5$ |
$10$ |
$3$ |
$[ 0; 2, 2, 5, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 13.10-1.0.2-2-2-2-5-5-5.1 |
$13$ |
$0$ |
$D_5$ |
$10$ |
$4$ |
$[ 0; 2, 2, 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 13.10-1.0.2-2-2-2-5-5-5.2 |
$13$ |
$0$ |
$D_5$ |
$10$ |
$4$ |
$[ 0; 2, 2, 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 13.10-1.0.2-2-2-2-5-5-5.3 |
$13$ |
$0$ |
$D_5$ |
$10$ |
$4$ |
$[ 0; 2, 2, 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 13.10-1.0.2-2-2-2-5-5-5.4 |
$13$ |
$0$ |
$D_5$ |
$10$ |
$4$ |
$[ 0; 2, 2, 2, 2, 5, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 14.10-1.0.2-2-2-2-2-2-5-5.1 |
$14$ |
$0$ |
$D_5$ |
$10$ |
$5$ |
$[ 0; 2, 2, 2, 2, 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 14.10-1.0.2-2-2-2-2-2-5-5.2 |
$14$ |
$0$ |
$D_5$ |
$10$ |
$5$ |
$[ 0; 2, 2, 2, 2, 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 14.10-1.0.2-2-2-2-2-2-5-5.3 |
$14$ |
$0$ |
$D_5$ |
$10$ |
$5$ |
$[ 0; 2, 2, 2, 2, 2, 2, 5, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 15.10-1.0.2-2-2-2-2-2-2-2-5.1 |
$15$ |
$0$ |
$D_5$ |
$10$ |
$6$ |
$[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |
| 15.10-1.0.2-2-2-2-2-2-2-2-5.2 |
$15$ |
$0$ |
$D_5$ |
$10$ |
$6$ |
$[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 5 ]$ |
|
|
$(1,6)(2,10)(3,9)(4,8)(5,7),\ldots$ |