| Refined passport label |
Genus |
Quotient genus |
Group |
Group order |
Dimension |
Signature |
Hyperelliptic |
Cyclic trigonal |
Generating vectors |
| 6.2-1.0.2-2-2-2-2-2-2-2-2-2-2-2-2-2.1 |
$6$ |
$0$ |
$C_2$ |
$2$ |
$11$ |
$[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2),\ldots$ |
| 6.4-1.0.2-2-2-2-2-2-4-4.1 |
$6$ |
$0$ |
$C_4$ |
$4$ |
$5$ |
$[ 0; 2, 2, 2, 2, 2, 2, 4, 4 ]$ |
✓ |
|
$(1,2)(3,4),\ldots$ |
| 6.4-2.0.2-2-2-2-2-2-2-2-2.10 |
$6$ |
$0$ |
$C_2^2$ |
$4$ |
$6$ |
$[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4),\ldots$ |
| 6.4-2.0.2-2-2-2-2-2-2-2-2.7 |
$6$ |
$0$ |
$C_2^2$ |
$4$ |
$6$ |
$[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4),\ldots$ |
| 6.4-2.0.2-2-2-2-2-2-2-2-2.1 |
$6$ |
$0$ |
$C_2^2$ |
$4$ |
$6$ |
$[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 2 ]$ |
✓ |
|
$(1,2)(3,4),\ldots$ |
| 6.6-2.0.2-2-2-2-6-6.1 |
$6$ |
$0$ |
$C_6$ |
$6$ |
$3$ |
$[ 0; 2, 2, 2, 2, 6, 6 ]$ |
✓ |
|
$(1,4)(2,5)(3,6),\ldots$ |
| 6.8-1.0.2-2-2-8-8.2 |
$6$ |
$0$ |
$C_8$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 8, 8 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
| 6.8-4.0.2-2-4-4-4.1 |
$6$ |
$0$ |
$Q_8$ |
$8$ |
$2$ |
$[ 0; 2, 2, 4, 4, 4 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
| 6.8-1.0.2-2-2-8-8.1 |
$6$ |
$0$ |
$C_8$ |
$8$ |
$2$ |
$[ 0; 2, 2, 2, 8, 8 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
| 6.8-3.0.2-2-2-2-2-4.1 |
$6$ |
$0$ |
$D_4$ |
$8$ |
$3$ |
$[ 0; 2, 2, 2, 2, 2, 4 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8),\ldots$ |
| 6.12-1.0.2-4-4-6.1 |
$6$ |
$0$ |
$C_3:C_4$ |
$12$ |
$1$ |
$[ 0; 2, 4, 4, 6 ]$ |
✓ |
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
| 6.12-4.0.2-2-2-2-6.1 |
$6$ |
$0$ |
$D_6$ |
$12$ |
$2$ |
$[ 0; 2, 2, 2, 2, 6 ]$ |
✓ |
|
$(1,4)(2,5)(3,6)(7,10)(8,11)(9,12),\ldots$ |
| 6.16-8.0.2-2-4-8.2 |
$6$ |
$0$ |
$\SD_{16}$ |
$16$ |
$1$ |
$[ 0; 2, 2, 4, 8 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16),\ldots$ |
| 6.16-8.0.2-2-4-8.1 |
$6$ |
$0$ |
$\SD_{16}$ |
$16$ |
$1$ |
$[ 0; 2, 2, 4, 8 ]$ |
✓ |
|
$(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16),\ldots$ |
| 6.24-6.0.2-2-2-12.2 |
$6$ |
$0$ |
$D_{12}$ |
$24$ |
$1$ |
$[ 0; 2, 2, 2, 12 ]$ |
✓ |
|
$(1,4)\cdots(21,24),\ldots$ |
| 6.24-6.0.2-2-2-12.1 |
$6$ |
$0$ |
$D_{12}$ |
$24$ |
$1$ |
$[ 0; 2, 2, 2, 12 ]$ |
✓ |
|
$(1,4)\cdots(21,24),\ldots$ |
| 6.26-2.0.2-13-26.7 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.2 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.4 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.5 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.6 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.9 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.10 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.11 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.12 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.1 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.3 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.26-2.0.2-13-26.8 |
$6$ |
$0$ |
$C_{26}$ |
$26$ |
$0$ |
$[ 0; 2, 13, 26 ]$ |
✓ |
|
$(1,14)\cdots(13,26),\ldots$ |
| 6.28-3.0.2-2-2-7.3 |
$6$ |
$0$ |
$D_{14}$ |
$28$ |
$1$ |
$[ 0; 2, 2, 2, 7 ]$ |
✓ |
|
$(1,8)\cdots(21,28),\ldots$ |
| 6.28-3.0.2-2-2-7.1 |
$6$ |
$0$ |
$D_{14}$ |
$28$ |
$1$ |
$[ 0; 2, 2, 2, 7 ]$ |
✓ |
|
$(1,8)\cdots(21,28),\ldots$ |
| 6.28-3.0.2-2-2-7.2 |
$6$ |
$0$ |
$D_{14}$ |
$28$ |
$1$ |
$[ 0; 2, 2, 2, 7 ]$ |
✓ |
|
$(1,8)\cdots(21,28),\ldots$ |
| 6.48-6.0.2-4-24.4 |
$6$ |
$0$ |
$C_{24}:C_2$ |
$48$ |
$0$ |
$[ 0; 2, 4, 24 ]$ |
✓ |
|
$(1,25)\cdots(24,41),\ldots$ |
| 6.48-6.0.2-4-24.1 |
$6$ |
$0$ |
$C_{24}:C_2$ |
$48$ |
$0$ |
$[ 0; 2, 4, 24 ]$ |
✓ |
|
$(1,25)\cdots(24,41),\ldots$ |
| 6.48-6.0.2-4-24.3 |
$6$ |
$0$ |
$C_{24}:C_2$ |
$48$ |
$0$ |
$[ 0; 2, 4, 24 ]$ |
✓ |
|
$(1,25)\cdots(24,41),\ldots$ |
| 6.48-29.0.2-6-8.2 |
$6$ |
$0$ |
$\GL(2,3)$ |
$48$ |
$0$ |
$[ 0; 2, 6, 8 ]$ |
✓ |
|
$(1,25)\cdots(24,39),\ldots$ |
| 6.48-29.0.2-6-8.1 |
$6$ |
$0$ |
$\GL(2,3)$ |
$48$ |
$0$ |
$[ 0; 2, 6, 8 ]$ |
✓ |
|
$(1,25)\cdots(24,39),\ldots$ |
| 6.48-6.0.2-4-24.2 |
$6$ |
$0$ |
$C_{24}:C_2$ |
$48$ |
$0$ |
$[ 0; 2, 4, 24 ]$ |
✓ |
|
$(1,25)\cdots(24,41),\ldots$ |
| 6.56-7.0.2-4-14.5 |
$6$ |
$0$ |
$C_7:D_4$ |
$56$ |
$0$ |
$[ 0; 2, 4, 14 ]$ |
✓ |
|
$(1,29)\cdots(28,44),\ldots$ |
| 6.56-7.0.2-4-14.3 |
$6$ |
$0$ |
$C_7:D_4$ |
$56$ |
$0$ |
$[ 0; 2, 4, 14 ]$ |
✓ |
|
$(1,29)\cdots(28,44),\ldots$ |
| 6.56-7.0.2-4-14.2 |
$6$ |
$0$ |
$C_7:D_4$ |
$56$ |
$0$ |
$[ 0; 2, 4, 14 ]$ |
✓ |
|
$(1,29)\cdots(28,44),\ldots$ |
| 6.56-7.0.2-4-14.4 |
$6$ |
$0$ |
$C_7:D_4$ |
$56$ |
$0$ |
$[ 0; 2, 4, 14 ]$ |
✓ |
|
$(1,29)\cdots(28,44),\ldots$ |
| 6.56-7.0.2-4-14.6 |
$6$ |
$0$ |
$C_7:D_4$ |
$56$ |
$0$ |
$[ 0; 2, 4, 14 ]$ |
✓ |
|
$(1,29)\cdots(28,44),\ldots$ |
| 6.56-7.0.2-4-14.1 |
$6$ |
$0$ |
$C_7:D_4$ |
$56$ |
$0$ |
$[ 0; 2, 4, 14 ]$ |
✓ |
|
$(1,29)\cdots(28,44),\ldots$ |