The results below are complete, since the LMFDB contains all groups acting as automorphisms of curves of genus 2, 3 or 4
Refine search
| Refined passport label | Genus | Group | Group order | Dimension | Signature |
|---|---|---|---|---|---|
| 4.2-1.0.2-2-2-2-2-2-2-2-2-2.1 | $4$ | $C_2$ | $2$ | $7$ | $[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]$ |
| 4.2-1.1.2-2-2-2-2-2.1 | $4$ | $C_2$ | $2$ | $6$ | $[ 1; 2, 2, 2, 2, 2, 2 ]$ |
| 4.2-1.2.2-2.1 | $4$ | $C_2$ | $2$ | $5$ | $[ 2; 2, 2 ]$ |
| 4.3-1.0.3-3-3-3-3-3.1 | $4$ | $C_3$ | $3$ | $3$ | $[ 0; 3, 3, 3, 3, 3, 3 ]$ |
| 4.3-1.0.3-3-3-3-3-3.3 | $4$ | $C_3$ | $3$ | $3$ | $[ 0; 3, 3, 3, 3, 3, 3 ]$ |
| 4.3-1.0.3-3-3-3-3-3.2 | $4$ | $C_3$ | $3$ | $3$ | $[ 0; 3, 3, 3, 3, 3, 3 ]$ |
| 4.3-1.1.3-3-3.1 | $4$ | $C_3$ | $3$ | $3$ | $[ 1; 3, 3, 3 ]$ |
| 4.3-1.1.3-3-3.2 | $4$ | $C_3$ | $3$ | $3$ | $[ 1; 3, 3, 3 ]$ |
| 4.3-1.2.0.1 | $4$ | $C_3$ | $3$ | $3$ | $[ 2; -]$ |
| 4.4-1.0.2-4-4-4-4.1 | $4$ | $C_4$ | $4$ | $2$ | $[ 0; 2, 4, 4, 4, 4 ]$ |
| 4.4-1.0.2-4-4-4-4.2 | $4$ | $C_4$ | $4$ | $2$ | $[ 0; 2, 4, 4, 4, 4 ]$ |
| 4.4-1.0.2-2-2-2-4-4.1 | $4$ | $C_4$ | $4$ | $3$ | $[ 0; 2, 2, 2, 2, 4, 4 ]$ |
| 4.4-2.0.2-2-2-2-2-2-2.5 | $4$ | $C_2^2$ | $4$ | $4$ | $[ 0; 2, 2, 2, 2, 2, 2, 2 ]$ |
| 4.4-2.0.2-2-2-2-2-2-2.2 | $4$ | $C_2^2$ | $4$ | $4$ | $[ 0; 2, 2, 2, 2, 2, 2, 2 ]$ |
| 4.4-2.0.2-2-2-2-2-2-2.6 | $4$ | $C_2^2$ | $4$ | $4$ | $[ 0; 2, 2, 2, 2, 2, 2, 2 ]$ |
| 4.4-2.0.2-2-2-2-2-2-2.4 | $4$ | $C_2^2$ | $4$ | $4$ | $[ 0; 2, 2, 2, 2, 2, 2, 2 ]$ |
| 4.4-2.0.2-2-2-2-2-2-2.1 | $4$ | $C_2^2$ | $4$ | $4$ | $[ 0; 2, 2, 2, 2, 2, 2, 2 ]$ |
| 4.4-2.0.2-2-2-2-2-2-2.3 | $4$ | $C_2^2$ | $4$ | $4$ | $[ 0; 2, 2, 2, 2, 2, 2, 2 ]$ |
| 4.4-1.1.4-4.1 | $4$ | $C_4$ | $4$ | $2$ | $[ 1; 4, 4 ]$ |
| 4.4-2.1.2-2-2.1 | $4$ | $C_2^2$ | $4$ | $3$ | $[ 1; 2, 2, 2 ]$ |
| 4.5-1.0.5-5-5-5.7 | $4$ | $C_5$ | $5$ | $1$ | $[ 0; 5, 5, 5, 5 ]$ |
| 4.5-1.0.5-5-5-5.5 | $4$ | $C_5$ | $5$ | $1$ | $[ 0; 5, 5, 5, 5 ]$ |
| 4.5-1.0.5-5-5-5.4 | $4$ | $C_5$ | $5$ | $1$ | $[ 0; 5, 5, 5, 5 ]$ |
| 4.5-1.0.5-5-5-5.2 | $4$ | $C_5$ | $5$ | $1$ | $[ 0; 5, 5, 5, 5 ]$ |
| 4.5-1.0.5-5-5-5.3 | $4$ | $C_5$ | $5$ | $1$ | $[ 0; 5, 5, 5, 5 ]$ |
| 4.5-1.0.5-5-5-5.6 | $4$ | $C_5$ | $5$ | $1$ | $[ 0; 5, 5, 5, 5 ]$ |
| 4.5-1.0.5-5-5-5.1 | $4$ | $C_5$ | $5$ | $1$ | $[ 0; 5, 5, 5, 5 ]$ |
| 4.6-2.0.2-6-6-6.1 | $4$ | $C_6$ | $6$ | $1$ | $[ 0; 2, 6, 6, 6 ]$ |
| 4.6-2.0.3-3-6-6.2 | $4$ | $C_6$ | $6$ | $1$ | $[ 0; 3, 3, 6, 6 ]$ |
| 4.6-2.0.2-6-6-6.2 | $4$ | $C_6$ | $6$ | $1$ | $[ 0; 2, 6, 6, 6 ]$ |
| 4.6-2.0.3-3-6-6.1 | $4$ | $C_6$ | $6$ | $1$ | $[ 0; 3, 3, 6, 6 ]$ |
| 4.6-2.0.3-3-6-6.3 | $4$ | $C_6$ | $6$ | $1$ | $[ 0; 3, 3, 6, 6 ]$ |
| 4.6-2.0.2-2-2-3-6.2 | $4$ | $C_6$ | $6$ | $2$ | $[ 0; 2, 2, 2, 3, 6 ]$ |
| 4.6-1.0.2-2-3-3-3.1 | $4$ | $S_3$ | $6$ | $2$ | $[ 0; 2, 2, 3, 3, 3 ]$ |
| 4.6-2.0.2-2-3-3-3.2 | $4$ | $C_6$ | $6$ | $2$ | $[ 0; 2, 2, 3, 3, 3 ]$ |
| 4.6-2.0.2-2-2-3-6.1 | $4$ | $C_6$ | $6$ | $2$ | $[ 0; 2, 2, 2, 3, 6 ]$ |
| 4.6-2.0.2-2-3-3-3.1 | $4$ | $C_6$ | $6$ | $2$ | $[ 0; 2, 2, 3, 3, 3 ]$ |
| 4.6-1.0.2-2-2-2-2-2.1 | $4$ | $S_3$ | $6$ | $3$ | $[ 0; 2, 2, 2, 2, 2, 2 ]$ |
| 4.6-1.1.2-2.1 | $4$ | $S_3$ | $6$ | $2$ | $[ 1; 2, 2 ]$ |
| 4.6-2.1.2-2.1 | $4$ | $C_6$ | $6$ | $2$ | $[ 1; 2, 2 ]$ |
| 4.8-4.0.2-4-4-4.1 | $4$ | $Q_8$ | $8$ | $1$ | $[ 0; 2, 4, 4, 4 ]$ |
| 4.8-1.0.2-2-8-8.1 | $4$ | $C_8$ | $8$ | $1$ | $[ 0; 2, 2, 8, 8 ]$ |
| 4.8-1.0.2-2-8-8.2 | $4$ | $C_8$ | $8$ | $1$ | $[ 0; 2, 2, 8, 8 ]$ |
| 4.8-3.0.2-2-2-2-4.1 | $4$ | $D_4$ | $8$ | $2$ | $[ 0; 2, 2, 2, 2, 4 ]$ |
| 4.8-3.0.2-2-2-2-4.3 | $4$ | $D_4$ | $8$ | $2$ | $[ 0; 2, 2, 2, 2, 4 ]$ |
| 4.8-3.0.2-2-2-2-4.2 | $4$ | $D_4$ | $8$ | $2$ | $[ 0; 2, 2, 2, 2, 4 ]$ |
| 4.9-1.0.9-9-9.1 | $4$ | $C_9$ | $9$ | $0$ | $[ 0; 9, 9, 9 ]$ |
| 4.9-1.0.9-9-9.3 | $4$ | $C_9$ | $9$ | $0$ | $[ 0; 9, 9, 9 ]$ |
| 4.9-1.0.9-9-9.2 | $4$ | $C_9$ | $9$ | $0$ | $[ 0; 9, 9, 9 ]$ |
| 4.9-1.0.9-9-9.4 | $4$ | $C_9$ | $9$ | $0$ | $[ 0; 9, 9, 9 ]$ |