# Properties

 Label 9.8-5.0.2-2-2-2-2-2-2-2.106 Genus $$9$$ Quotient genus $$0$$ Group $$C_2^3$$ Signature $$[ 0; 2, 2, 2, 2, 2, 2, 2, 2 ]$$ Generating Vectors $$1$$

# Related objects

## Family Information

 Genus: $9$ Quotient genus: $0$ Group name: $C_2^3$ Group identifier: $[8,5]$ Signature: $[ 0; 2, 2, 2, 2, 2, 2, 2, 2 ]$
 Conjugacy classes for this refined passport: $2, 3, 3, 3, 3, 3, 5, 8$

 Jacobian variety group algebra decomposition: $A_{2}\times A_{2}\times A_{2}\times A_{3}$ Corresponding character(s): $3, 4, 7, 8$

## Other Data

 Hyperelliptic curve(s): yes Hyperelliptic involution: (1,3) (2,4) (5,7) (6,8) Cyclic trigonal curve(s): no

 Equation(s) of curve(s) in this refined passport:
 $y^2=(x^{4}+a_{1}x^{2}+1)(x^{4}+a_{2}x^{2}+1)(x^{4}+a_{3}x^{2}+1)(x^{4}+a_{4}x^{2}+1)(x^{4}+a_{5}x^{2}+1)$

## Generating vector(s)

Displaying the unique generating vector for this refined passport.

9.8-5.0.2-2-2-2-2-2-2-2.106.1

 (1,2) (3,4) (5,6) (7,8) (1,3) (2,4) (5,7) (6,8) (1,3) (2,4) (5,7) (6,8) (1,3) (2,4) (5,7) (6,8) (1,3) (2,4) (5,7) (6,8) (1,3) (2,4) (5,7) (6,8) (1,5) (2,6) (3,7) (4,8) (1,8) (2,7) (3,6) (4,5)