Properties

Label 9.8-3.0.2-2-2-2-2-2-2-2.5
Genus \(9\)
Quotient genus \(0\)
Group \(D_4\)
Signature \([ 0; 2, 2, 2, 2, 2, 2, 2, 2 ]\)
Generating Vectors \(32\)

Related objects

Downloads

Learn more

Family Information

Genus: $9$
Quotient genus: $0$
Group name: $D_4$
Group identifier: $[8,3]$
Signature: $[ 0; 2, 2, 2, 2, 2, 2, 2, 2 ]$
Conjugacy classes for this refined passport: $3, 3, 3, 3, 4, 4, 4, 4$

Jacobian variety group algebra decomposition:$E\times E\times A_{3}\times A_{2}^{2}$
Corresponding character(s): $2, 3, 4, 5$

Other Data

Hyperelliptic curve(s):no
Cyclic trigonal curve(s):no

Generating vector(s)

Displaying 20 of 32 generating vectors for this refined passport.

9.8-3.0.2-2-2-2-2-2-2-2.5.1

  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.2
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.3
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.4
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.5
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.6
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.7
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.8
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.9
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.10
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.11
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.12
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.13
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.14
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.15
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.16
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.17
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)

9.8-3.0.2-2-2-2-2-2-2-2.5.18
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.19
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)

9.8-3.0.2-2-2-2-2-2-2-2.5.20
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)

Display number of generating vectors: