Properties

Label 7.32-39.0.2-2-2-8
Genus \(7\)
Quotient genus \(0\)
Group \(C_2\times D_8\)
Signature \([ 0; 2, 2, 2, 8 ]\)

Downloads

Learn more

Family Information

Genus: $7$
Dimension of the family: $1$

Cover

Quotient genus: $0$
Number of branch points: $4$
Signature: $[ 0; 2, 2, 2, 8 ]$

Group

Name: $C_2\times D_8$
Identifier:$[32,39]$

Conjugacy class(es) of Refined passports

Refined passport label Conjugacy classes
7.32-39.0.2-2-2-8.1 3, 5, 7, 13
7.32-39.0.2-2-2-8.2 3, 5, 7, 14
7.32-39.0.2-2-2-8.3 3, 5, 8, 11
7.32-39.0.2-2-2-8.4 3, 5, 8, 12
7.32-39.0.2-2-2-8.5 3, 6, 7, 11
7.32-39.0.2-2-2-8.6 3, 6, 7, 12
7.32-39.0.2-2-2-8.7 3, 6, 8, 13
7.32-39.0.2-2-2-8.8 3, 6, 8, 14
7.32-39.0.2-2-2-8.9 4, 5, 7, 13
7.32-39.0.2-2-2-8.10 4, 5, 7, 14
7.32-39.0.2-2-2-8.11 4, 5, 8, 11
7.32-39.0.2-2-2-8.12 4, 5, 8, 12
7.32-39.0.2-2-2-8.13 4, 6, 7, 11
7.32-39.0.2-2-2-8.14 4, 6, 7, 12
7.32-39.0.2-2-2-8.15 4, 6, 8, 13
7.32-39.0.2-2-2-8.16 4, 6, 8, 14

Displaying the representative for the unique action up to topological equivalence.

7.32-39.0.2-2-2-8.1.1
  (1,5) (2,6) (3,7) (4,8) (9,13) (10,14) (11,15) (12,16) (17,21) (18,22) (19,23) (20,24) (25,29) (26,30) (27,31) (28,32)
  (1,9) (2,10) (3,12) (4,11) (5,13) (6,14) (7,16) (8,15) (17,25) (18,26) (19,28) (20,27) (21,29) (22,30) (23,32) (24,31)
  (1,17) (2,18) (3,20) (4,19) (5,21) (6,22) (7,24) (8,23) (9,27) (10,28) (11,25) (12,26) (13,31) (14,32) (15,29) (16,30)
  (1,29,4,32,2,30,3,31) (5,25,8,28,6,26,7,27) (9,24,12,22,10,23,11,21) (13,20,16,18,14,19,15,17)