Family Information
Genus: | 7 |
Quotient Genus: | 0 |
Group name: | $C_3\times C_9$ |
Group identifier: | [27,2] |
Signature: | $[ 0; 3, 9, 9 ]$ |
Conjugacy classes for this refined passport: | 7, 12, 27 |
The full automorphism group for this family is $C_3\times D_9$ with signature $[ 0; 2, 6, 9 ]$.
Jacobian variety group algebra decomposition: | $A_{3}\times A_{3}\times E$ |
Corresponding character(s): | 5, 6, 11 |
Generating Vector(s)
Displaying the unique generating vector for this refined passport.
7.27-2.0.3-9-9.30.1
(1,9,5) (2,7,6) (3,8,4) (10,18,14) (11,16,15) (12,17,13) (19,27,23) (20,25,24) (21,26,22) | |
(1,11,21,2,12,19,3,10,20) (4,14,24,5,15,22,6,13,23) (7,17,27,8,18,25,9,16,26) | |
(1,24,18,3,23,17,2,22,16) (4,27,12,6,26,11,5,25,10) (7,21,15,9,20,14,8,19,13) |