Family Information
Genus: | 7 |
Quotient Genus: | 0 |
Group name: | $C_3\times C_9$ |
Group identifier: | [27,2] |
Signature: | $[ 0; 3, 9, 9 ]$ |
Conjugacy classes for this refined passport: | 6, 18, 23 |
The full automorphism group for this family is $C_3\times D_9$ with signature $[ 0; 2, 6, 9 ]$.
Jacobian variety group algebra decomposition: | $A_{3}\times A_{3}\times E$ |
Corresponding character(s): | 5, 6, 11 |
Generating Vector(s)
Displaying the unique generating vector for this refined passport.
7.27-2.0.3-9-9.26.1
(1,5,9) (2,6,7) (3,4,8) (10,14,18) (11,15,16) (12,13,17) (19,23,27) (20,24,25) (21,22,26) | |
(1,14,27,2,15,25,3,13,26) (4,17,21,5,18,19,6,16,20) (7,11,24,8,12,22,9,10,23) | |
(1,22,17,3,24,16,2,23,18) (4,25,11,6,27,10,5,26,12) (7,19,14,9,21,13,8,20,15) |