Family Information
Genus: | 7 |
Quotient Genus: | 0 |
Group name: | $C_3\times C_9$ |
Group identifier: | [27,2] |
Signature: | $[ 0; 3, 9, 9 ]$ |
Conjugacy classes for this refined passport: | 5, 21, 22 |
The full automorphism group for this family is $C_3\times D_9$ with signature $[ 0; 2, 6, 9 ]$.
Jacobian variety group algebra decomposition: | $A_{3}\times A_{3}\times E$ |
Corresponding character(s): | 5, 6, 11 |
Generating Vector(s)
Displaying the unique generating vector for this refined passport.
7.27-2.0.3-9-9.18.1
(1,7,4) (2,8,5) (3,9,6) (10,16,13) (11,17,14) (12,18,15) (19,25,22) (20,26,23) (21,27,24) | |
(1,27,15,3,26,14,2,25,13) (4,21,18,6,20,17,5,19,16) (7,24,12,9,23,11,8,22,10) | |
(1,16,22,2,17,23,3,18,24) (4,10,25,5,11,26,6,12,27) (7,13,19,8,14,20,9,15,21) |