Family Information
Genus: | 7 |
Quotient Genus: | 0 |
Group name: | $C_3\times C_9$ |
Group identifier: | [27,2] |
Signature: | $[ 0; 3, 9, 9 ]$ |
Conjugacy classes for this refined passport: | 5, 13, 18 |
The full automorphism group for this family is $C_3\times D_9$ with signature $[ 0; 2, 6, 9 ]$.
Jacobian variety group algebra decomposition: | $A_{3}\times A_{3}\times E$ |
Corresponding character(s): | 5, 6, 11 |
Generating Vector(s)
Displaying the unique generating vector for this refined passport.
7.27-2.0.3-9-9.13.1
(1,7,4) (2,8,5) (3,9,6) (10,16,13) (11,17,14) (12,18,15) (19,25,22) (20,26,23) (21,27,24) | |
(1,20,10,3,19,12,2,21,11) (4,23,13,6,22,15,5,24,14) (7,26,16,9,25,18,8,27,17) | |
(1,14,27,2,15,25,3,13,26) (4,17,21,5,18,19,6,16,20) (7,11,24,8,12,22,9,10,23) |