Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times A_4\)
Signature \([ 0; 3, 3, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times A_4$
Group identifier: [36,11]
Signature: $[ 0; 3, 3, 6 ]$
Conjugacy classes for this refined passport: 8, 9, 12

The full automorphism group for this family is $C_3\times S_4$ with signature $[ 0; 2, 3, 12 ]$.

Jacobian variety group algebra decomposition:$E\times E^{3}$
Corresponding character(s): 2, 11

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

4.36-11.0.3-3-6.6.1

  (1,33,17) (2,35,20) (3,36,18) (4,34,19) (5,25,21) (6,27,24) (7,28,22) (8,26,23) (9,29,13) (10,31,16) (11,32,14) (12,30,15)
  (1,23,32) (2,22,30) (3,24,29) (4,21,31) (5,15,36) (6,14,34) (7,16,33) (8,13,35) (9,19,28) (10,18,26) (11,20,25) (12,17,27)
  (1,11,5,3,9,7) (2,12,6,4,10,8) (13,23,17,15,21,19) (14,24,18,16,22,20) (25,35,29,27,33,31) (26,36,30,28,34,32)