Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times A_4\)
Signature \([ 0; 3, 3, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times A_4$
Group identifier: [36,11]
Signature: $[ 0; 3, 3, 6 ]$
Conjugacy classes for this refined passport: 7, 10, 11

The full automorphism group for this family is $C_3\times S_4$ with signature $[ 0; 2, 3, 12 ]$.

Jacobian variety group algebra decomposition:$E\times E^{3}$
Corresponding character(s): 2, 11

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

4.36-11.0.3-3-6.5.1

  (1,17,33) (2,20,35) (3,18,36) (4,19,34) (5,21,25) (6,24,27) (7,22,28) (8,23,26) (9,13,29) (10,16,31) (11,14,32) (12,15,30)
  (1,32,23) (2,30,22) (3,29,24) (4,31,21) (5,36,15) (6,34,14) (7,33,16) (8,35,13) (9,28,19) (10,26,18) (11,25,20) (12,27,17)
  (1,8,9,4,5,12) (2,7,10,3,6,11) (13,20,21,16,17,24) (14,19,22,15,18,23) (25,32,33,28,29,36) (26,31,34,27,30,35)